ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossing of large multiquasiparticle magnetic-rotation bands in $^{198}$Bi

117   0   0.0 ( 0 )
 نشر من قبل Haridas Pai
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

High-spin states in the doubly-odd $^{198}$Bi nucleus have been studied by using the $^{185,187}$Re($^{16}$O, xn) reactions at the beam energy of 112.5 MeV. $gamma-gamma$ coincidence were measured by using the INGA array with 15 Compton suppressed clover HPGe detectors. The observed levels have been assigned definite spin-parity. The high spin structure is grouped into three bands (B1, B2 and B3), of which two (B1 and B2) exhibit the properties of magnetic rotation (MR). Tilted axis cranking calculations were carried out to explain the MR bands having large multi-quasiparticle configurations. The calculated results explain the bands B1 and B2 very nicely, confirming the shears mechanism and suggest a crossing of two MR bands in both the cases. The crossing is from 6-qp to 8-qp in band B1 and from 4-qp to 6-qp in band B2, a very rare finding. A semiclassical model has also been used to obtain the particle-hole interaction strengths for the bands B1 and B2, below the band crossing.



قيم البحث

اقرأ أيضاً

Low lying states of $^{198}$Hg have been investigated via $^{197}$Au($^{7}$Li, $ alpha $2n$ gamma $)$ ^{198} $Hg reaction at E$ _{text{beam}} $ = 33 MeV and 38 MeV and the members of $ gamma $-vibrational band have been identified. Results are compar ed with the systematic of this mass region and found in agreement. Observed band structures have been interpreted using the theoretical framework of microscopic triaxial projected shell model (TPSM) approach and it is shown that TPSM results are in fair agreement with the observed energies.
High-spin states in $^{84}$Rb are studied by using the $^{70}$Zn($^{18}$O, p3n)$^{84}$Rb reaction at beam energy of 75 MeV. Three high-lying negative-parity bands are established, whose level spacings are very regular, i.e., there dont exist signatur e splitting. The dipole character of the transitions of these three bands is assigned by the $gamma$-$gamma$ directional correlations of oriented states (DCO) intensity ratios and the multipolarity M1 is suggested by the analogy to multiparticle excitations in neighboring nuclei. The strong M1 and weak or no E2 transitions are observed. All these characteristic features show they are magnetic rotation bands.
The lifetimes for the high spin levels of the yrast band of $^{110}$Cd has been measured. The estimated B(E2) values decrease with increase in angular momentum. This is the characteristic of Anti magnetic rotation as reported in $^{106,108}$Cd. Howev er, alignment behavior of $^{110}$Cd is completely different from its even-even neighbors. A model based on classical particle plus rotor has been used to explore the underlying systematics and develop a self consistent picture for the observed behavior of these isotopes.
New transitions in neutron rich $^{100}$Y have been identified in a $^9$Be+$^{238}$U experiment with mass- and Z- gates to provide full fragment identification. These transitions and high spin levels of $^{100}$Y have been investigated by analyzing t he high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ coincidence data from the spontaneous fission of $^{252}$Cf at the Gammasphere detector array. Two new bands, 14 new levels and 23 new transitions have been identified. The $K^{pi}=4^+$ new band decaying to an 1s isomeric state is assigned to be the high-$K$ Gallagher-Moszkowski (GM) partner of the known $K^{pi}=1^+$ band, with the $pi 5/2[522] otimes u 3/2[411]$ configuration. This 4$^+$ band is also proposed to be the pseudo spin partner of the new $K^{pi}=5^+$ band with a 5$^{+}$ $pi 5/2[422] otimes u 5/2[413]$ configuration, to form a $pi 5/2[422] otimes u [312$ $5/2,3/2]$ neutron pseudospin doublet. Constrained triaxial covariant density functional theory and quantal particle rotor model calculations have been applied to interpret the band structure and available electromagnetic transition probabilities and are found in good agreement with experimental values.
Two new bands have been identified in $^{137}$Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the ba nd properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in $^{137}$Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of nuclei presenting multiple chiral bands in the Segre chart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا