ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions

225   0   0.0 ( 0 )
 نشر من قبل Christopher Ballance
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the speed/fidelity trade-off for a two-qubit phase gate implemented in $^{43}$Ca$^+$ hyperfine trapped-ion qubits. We characterize various error sources contributing to the measured fidelity, allowing us to account for errors due to single-qubit state preparation, rotation and measurement (each at the $sim0.1%$ level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between $97.1(2)%$ (for a gate time $t_g=3.8mu$s) and $99.9(1)%$ (for $t_g=100mu$s), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case.



قيم البحث

اقرأ أيضاً

Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8$mu$s and 520$mu$s, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
In a large scale trapped atomic ion quantum computer, high-fidelity two-qubit gates need to be extended over all qubits with individual control. We realize and characterize high-fidelity two-qubit gates in a system with up to 4 ions using radial mode s. The ions are individually addressed by two tightly focused beams steered using micro-electromechanical system (MEMS) mirrors. We deduce a gate fidelity of 99.49(7)% in a two-ion chain and 99.30(6)% in a four-ion chain by applying a sequence of up to 21 two-qubit gates and measuring the final state fidelity. We characterize the residual errors and discuss methods to further improve the gate fidelity towards values that are compatible with fault-tolerant quantum computation.
We present a method that combines continuous and pulsed microwave radiation patterns to achieve robust interactions among hyperfine trapped ions placed in a magnetic field gradient. More specifically, our scheme displays continuous microwave drivings with modulated phases, phase flips, and $pi$ pulses. This leads to high-fidelity entangling gates which are resilient against magnetic field fluctuations, changes on the microwave amplitudes, and crosstalk effects. Our protocol runs with arbitrary values of microwave power, which includes the technologically relevant case of low microwave intensities. We demonstrate the performance of our method with detailed numerical simulations that take into account the main sources of decoherence.
We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated ion trap. We measure a gate fidelity of 99.7(1)%, which is above the minimum threshold required for fault-tolerant quantum computing. The gate is applied directly to $^{43}$Ca$^+$ atomic clock qubits (coherence time $T_2^*approx 50,mathrm{s}$) using the microwave magnetic field gradient produced by a trap electrode. We introduce a dynamically-decoupled gate method, which stabilizes the qubits against fluctuating a.c. Zeeman shifts and avoids the need to null the microwave field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا