ﻻ يوجد ملخص باللغة العربية
Structural, magnetic (M) and thermal (C_m) studies on Ce_2(Ni_{1-y}Pd_y)_2Sn alloys are presented within the 0<y<0.55 range of concentration, showing evidences for itinerant to local electronic transformation. At variance with RKKY type interactions between localized moments mu_{eff}, the substitution of Ni by isoelectronic Pd leads the antiferromagnetic transition to decrease from T_N~3.8K to ~1.2K between y=0 and 0.48, while M(H) measured at H=5Tesla and 1.8K rises from 0.12 up to 0.75mu_B/Ce-at. Furthermore, the C_m(T_N) jump increases with concentration whereas |theta_P| decreases. The magnetic entropy S_m(T) grows moderately with temperature for y=0 due to a significant contribution of excited levels at low energy, while at y=0.5 it shows a incipient plateau around S_m=Rln2. All these features reflect the progressive ground state transformation of from itinerant to a local character. Another peculiarity of this system is the nearly constant value of C_m(T_N) that ends in an entropy bottleneck as T_N decreases. Consequently, the system shows a critical point at y_{cr}~0.48 with signs of ferromagnetic behavior above H_{cr}~0.3T. A splitting of the C_m(T_N) maximum, tuned by field and concentration, indicates a competition between two magnetic phases, with respective peaks at T_N~1.2K and T_I~1.45K.
We report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline Ni$_{1-x}$Rh$_x$ alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed
A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c
We investigate the effect of Ni${text -}$substitution on the crystalline structure and the critical behavior of $Nd_{0.6}Sr_{0.4}Mn_{1-x}Ni_{x}O_{3}$ (0.00 $leq$ x $leq$ 0.20) perovskite. X${text -}$ray diffraction patterns revealed that the major ph
Metallic quantum criticality is among the central theme in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under calling. In this work, we develop state-of-art large sca
A focus of recent experimental and theoretical studies on heavy fermion systems close to antiferromagnetic (AFM) quantum critical points (QCP) is directed toward revealing the nature of the fixed point, i.e., whether it is an itinerant antiferromagne