ﻻ يوجد ملخص باللغة العربية
In this work we derive the general conditions for obtaining nonreciprocity in multi-mode parametrically-coupled systems. The results can be applied to a broad variety of optical, microwave, and hybrid systems including recent electro- and opto-mechanical devices. In deriving these results, we use a graph-based methodology to derive the scattering matrix. This approach naturally expresses the terms in the scattering coefficients as separate graphs corresponding to distinct coupling paths between modes such that it is evident that nonreciprocity arises as a consequence of multi-path interference and dissipation in key ancillary modes. These concepts facilitate the construction of new devices in which several other characteristics might also be simultaneously optimized. As an example, we synthesize a novel three-mode unilateral amplifier design by use of graphs. Finally, we analyze the isolation generated in a common parametric multi-mode system, the DC-SQUID.
The interaction of flux qubits with a low frequency tank circuit is studied. It is shown that changes in the state of the interacting qubits influence the effective impedance of the circuit, which is the essence of the so-called impedance measurement
We report on a method for detecting weakly coupled spurious two-level system fluctuators (TLSs) in superconducting qubits. This method is more sensitive that standard spectroscopic techniques for locating TLSs with a reduced data acquisition time.
Nonreciprocal devices such as circulators and isolators belong to an important class of microwave components employed in applications like the measurement of mesoscopic circuits at cryogenic temperatures. The measurement protocols usually involve an
We reveal the cooperative effect of coherent and dissipative magnon-photon couplings in an open cavity magnonic system, which leads to nonreciprocity with a considerably large isolation ratio and flexible controllability. Furthermore, we discover uni
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whisp