ترغب بنشر مسار تعليمي؟ اضغط هنا

Bridging EUV and white-light observations to inspect the initiation phase of a two-stage solar eruptive event

527   0   0.0 ( 0 )
 نشر من قبل Jason Byrne PhD
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The initiation phase of CMEs is a very important aspect of solar physics, as these phenomena ultimately drive space weather in the heliosphere. This phase is known to occur between the photosphere and low corona, where many models introduce an instability and/or magnetic reconnection that triggers a CME, often with associated flaring activity. To this end, it is important to obtain a variety of observations of the low corona in order to build as clear a picture as possible of the dynamics that occur therein. Here, we combine the EUV imagery of the SWAP instrument on board PROBA2 with the white-light imagery of the ground-based Mk4 coronameter at MLSO in order to bridge the observational gap that exists between the disk imagery of AIA on board SDO and the coronal imagery of LASCO on board SOHO. Methods of multiscale image analysis were applied to the observations to better reveal the coronal signal while suppressing noise and other features. This allowed an investigation into the initiation phase of a CME that was driven by a rising flux rope structure from a two-stage flaring active region underlying an extended helmet streamer. It was found that the initial outward motion of the erupting loop system in the EUV observations coincided with the first X-ray flare peak, and led to a plasma pile-up of the white-light CME core material. The characterized CME core then underwent a strong jerk in its motion, as the early acceleration increased abruptly, simultaneous with the second X-ray flare peak. The overall system expanded into the helmet streamer to become the larger CME structure observed in the LASCO coronagraph images, which later became concave-outward in shape. Theoretical models for the event are discussed in light of these unique observations, and it is concluded that the formation of either a kink-unstable or torus-unstable flux rope may be the likeliest scenario.



قيم البحث

اقرأ أيضاً

Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energet ic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km/s at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.
166 - Xiaolei Li , Yuming Wang , Rui Liu 2020
White-light images from Heliospheric Imager-1 (HI1) onboard the Solar Terrestrial Relations Observatory (STEREO) provide 2-dimensional (2D) global views of solar wind transients traveling in the inner heliosphere from two perspectives. How to retriev e the hidden three-dimensional (3D) features of the transients from these 2D images is intriguing but challenging. In our previous work (Li et al., 2018), a correlation-aided method is developed to recognize the solar wind transients propagating along the Sun-Earth line based on simultaneous HI1 images from two STEREO spacecraft. Here the method is extended from the Sun-Earth line to the whole 3D space to reconstruct the solar wind transients in the common field of view of STEREO HI1 cameras. We demonstrate the capability of the method by showing the 3D shapes and propagation directions of a coronal mass ejection (CME) and three small-scale blobs during 3-4 April 2010. Comparing with some forward modeling methods, we found our method reliable in terms of the position, angular width and propagation direction. Based on our 3D reconstruction result, an angular distorted, nearly North-South oriented CME on 3 April 2010 is revealed, manifesting the complexity of a CMEs 3D structure.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f ield-of-view of 54x54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAPs point spread function (PSF) from the observations. In this paper we use the resulting images to conduct the first ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three-year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic field that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.
A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (ISOIS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second peri helion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm^2 sr s MeV)^-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80 degrees east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا