ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized translation invariant valuations and the polytope algebra

162   0   0.0 ( 0 )
 نشر من قبل Andreas Bernig
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the space of generalized translation invariant valuations on a finite-dimensional vector space and construct a partial convolution which extends the convolution of smooth translation invariant valuations. Our main theorem is that McMullens polytope algebra is a subalgebra of the (partial) convolution algebra of generalized translation invariant valuations. More precisely, we show that the polytope algebra embeds injectively into the space of generalized translation invariant valuations and that for polytopes in general position, the convolution is defined and corresponds to the product in the polytope algebra.



قيم البحث

اقرأ أيضاً

We give an explicit classification of translation-invariant, Lorentz-invariant continuous valuations on convex sets. We also classify the Lorentz-invariant even generalized valuations.
The dimensions of the spaces of $k$-homogeneous $mathrm{Spin}(9)$-invariant valuations on the octonionic plane are computed using results from the theory of differential forms on contact manifolds as well as octonionic geometry and representation the ory. Moreover, a valuation on Riemannian manifolds of particular interest is constructed which yields, as a special case, an element of $mathrm{Val}_2^{mathrm{Spin}(9)}$.
178 - Xiaochun Rong , Xuchao Yao 2020
The $pi_2$-diffeomorphism finiteness result (cite{FR1,2}, cite{PT}) asserts that the diffeomorphic types of compact $n$-manifolds $M$ with vanishing first and second homotopy groups can be bounded above in terms of $n$, and upper bounds on the absolu te value of sectional curvature and diameter of $M$. In this paper, we will generalize this $pi_2$-diffeomorphism finiteness by removing the condition that $pi_1(M)=0$ and asserting the diffeomorphism finiteness on the Riemannian universal cover of $M$.
We generalize valuations on polyhedral cones to valuations on fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion-restriction invariants. In particular, we define a characteri stic polynomial for fans in terms of spherical intrinsic volumes and show that it coincides with the usual characteristic polynomial in the case of hyperplane arrangements. This gives a simple deletion-restriction proof of a result of Klivans-Swartz. The metric projection of a cone is a piecewise-linear map, whose underlying fan prompts a generalization of spherical intrinsic volumes to indicator functions. We show that these intrinsic indicators yield valuations that separate polyhedral cones. Applied to hyperplane arrangements, this generalizes a result of Kabluchko on projection volumes.
336 - Sven Herrmann 2009
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope - corresponding to the triangulations of A - are very well stud ied, there is not much known about the facets of the secondary polytope. The splits of a polytope, subdivisions with exactly two maximal faces, are the simplest examples of such facets and the first that were systematically investigated. The present paper can be seen as a continuation of these studies and as a starting point of an examination of the subdivisions corresponding to the facets of the secondary polytope in general. As a special case, the notion of k-split is introduced as a possibility to classify polytopes in accordance to the complexity of the facets of their secondary polytopes. An application to matroid subdivisions of hypersimplices and tropical geometry is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا