ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of fringe-tracking algorithms for single-mode near-infrared long-baseline interferometers

356   0   0.0 ( 0 )
 نشر من قبل Elodie Choquet
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To enable optical long baseline interferometry toward faint objects, long integrations are necessary despite atmospheric turbulence. Fringe trackers are needed to stabilize the fringes and thus increase the fringe visibility and phase signal-to-noise ratio (SNR), with efficient controllers robust to instrumental vibrations, and to subsequent path fluctuations and flux drop-outs. We report on simulations, analysis and comparison of the performances of a classical integrator controller and of a Kalman controller, both optimized to track fringes under realistic observing conditions for different source magnitudes, disturbance conditions, and sampling frequencies. The key parameters of our simulations (instrument photometric performance, detection noise, turbulence and vibrations statistics) are based on typical observing conditions at the Very Large Telescope observatory and on the design of the GRAVITY instrument, a 4-telescope single-mode long baseline interferometer in the near-infrared, next in line to be installed at VLT Interferometer. We find that both controller performances follow a two-regime law with the star magnitude, a constant disturbance limited regime, and a diverging detector and photon noise limited regime. Moreover, we find that the Kalman controller is optimal in the high and medium SNR regime due to its predictive commands based on an accurate disturbance model. In the low SNR regime, the model is not accurate enough to be more robust than an integrator controller. Identifying the disturbances from high SNR measurements improves the Kalman performances in case of strong optical path difference disturbances.



قيم البحث

اقرأ أيضاً

PHASECam is the fringe tracker for the Large Binocular Telescope Interferometer (LBTI). It is a near-infrared camera which is used to measure both tip/tilt and fringe phase variations between the two adaptive optics (AO) corrected apertures of the La rge Binocular Telescope (LBT). Tip/tilt and phase sensing are currently performed in the $H$ (1.65 $mu$m) and $K$ (2.2 $mu$m) bands at 1 kHz, but only the $K$-band phase telemetry is used to send corrections to the system in order to maintain fringe coherence and visibility. However, due to the cyclic nature of the fringe phase, only the phase, modulo 360 deg, can be measured. PHASECams phase unwrapping algorithm, which attempts to mitigate this issue, occasionally fails in the case of fast, large phase variations or low signal-to-noise ratio. This can cause a fringe jump, in which case the OPD correction will be incorrect by a wavelength. This can currently be manually corrected by the operator. However, as the LBTI commissions further modes which require robust, active phase control and for which fringe jumps are harder to detect, including multi-axial (Fizeau) interferometry and dual-aperture non-redundant aperture masking interferometry, a more reliable and automated solution is desired. We present a multi-wavelength method of fringe jump capture and correction which involves direct comparison between the $K$-band and $H$-band phase telemetry. We demonstrate the method utilizing archival PHASECam telemetry, showing it provides a robust, reliable way of detecting fringe jumps which can potentially recover a significant fraction of the data lost to them.
109 - Florentin Millour 2012
We present here three recipes for getting better images with optical interferometers. Two of them, Low- Frequencies Filling and Brute-Force Monte Carlo were used in our participation to the Interferometry Beauty Contest this year and can be applied t o classical imaging using V 2 and closure phases. These two addition to image reconstruction provide a way of having more reliable images. The last recipe is similar in its principle as the self-calibration technique used in radio-interferometry. We call it also self-calibration, but it uses the wavelength-differential phase as a proxy of the object phase to build-up a full-featured complex visibility set of the observed object. This technique needs a first image-reconstruction run with an available software, using closure-phases and squared visibilities only. We used it for two scientific papers with great success. We discuss here the pros and cons of such imaging technique.
In this paper a description is given of the SFXC software correlator, developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The software is designed to run on generic Linux-based computing clusters. The correlation algorithm is e xplained in detail, as are some of the novel modes that software correlation has enabled, such as wide-field VLBI imaging through the use of multiple phase centres and pulsar gating and binning. This is followed by an overview of the software architecture. Finally, the performance of the correlator as a function of number of CPU cores, telescopes and spectral channels is shown.
The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in Augu st 2008 and is undergoing commissioning and preparation for science operation. Commissioning observations began shortly after installation and first results include the demonstration of spatially encoded fringe sensing and the increase in VLTI limiting magnitude for fringe tracking. However, difficulties have been encountered because the FSU does not incorporate real-time photometric correction and its fringe encoding depends on polarisation. These factors affect the control signals, especially their linearity, and can disturb the tracking control loop. To account for this, additional calibration and characterisation efforts are required. We outline the instrument concept and give an overview of the commissioning results obtained so far. We describe the effects of photometric variations and beam-train polarisation on the instrument operation and propose possible solutions. Finally, we update on the current status in view of the start of astrometric science operation with PRIMA.
268 - A. Muller , J.-U. Pott , A. Merand 2014
Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا