ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical imaging for the Spitzer Survey of Stellar Structure in Galaxies. Data release and notes on interacting galaxies

121   0   0.0 ( 0 )
 نشر من قبل Johan H. Knapen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) The Spitzer Survey for Stellar Structure in Galaxies (S4G) and its more recently approved extension will lead to a set of 3.6 and 4.5 micron images for 2829 galaxies, which can be used to study many different aspects of the structure and evolution of local galaxies. We collected and re-processed optical images in five bands from the Sloan Digital Sky Survey for 1657 galaxies, which are publicly released with the publication of this paper. We observed, in only the g-band, an additional 111 S4G galaxies in the northern hemisphere with the 2.5 m Liverpool Telescope, so that optical imaging is released for 1768 galaxies, or for 62% of the S4G sample. We visually checked all images. We noted interactions and close companions in our optical data set and in the S4G sample, confirming them by determining the galaxies radial velocities and magnitudes in the NASA-IPAC Extragalactic Database. We find that 17% of the S4G galaxies (21% of those brighter than 13.5 mag) have a close companion (within a radius of five times the diameter of the sample galaxy, a recession velocity within 200km/s and not more than 3 mag fainter) and that around 5% of the bright part of the S4G sample show significant morphological evidence of an ongoing interaction. This confirms and further supports previous estimates of these fractions. The over 8000 science images described in this paper, the re-processed Sloan Digital Sky Survey ones, the new Liverpool Telescope images, the set of 29 false-colour pictures, and the catalogue of companion and interacting galaxies, are all publicly released for general use for scientific, illustrative, or public outreach purposes.



قيم البحث

اقرأ أيضاً

The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of stellar structures seen in mid-IR galaxy morphology.
The Spitzer Survey of Stellar Structure in Galaxies (S$^4$G, Sheth et. al. 2010) is a deep 3.6 and 4.5 $mu$m imaging survey of 2352 nearby ($< 40$ Mpc) galaxies. We describe the S$^4$G data analysis pipeline 4, which is dedicated to 2-dimensional str uctural surface brightness decompositions of 3.6 $mu$m images, using GALFIT3.0 citep{peng2010}. Besides automatic 1-component Sersic fits, and 2-component Sersic bulge + exponential disk fits, we present human supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sersic index and bulge-to-total light ratio ($B/T$), confirming earlier results citep{laurikainen2007, gadotti2008, weinzirl2009}. In this first paper, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page ({bf tt www.oulu.fi/astronomy/S4G_PIPELINE4/MAIN}). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK_EDIT) used in data preparation. In the second paper we will present a detailed analysis of the bulge, disk, and bar parameter derived from multi-component decompositions.
The Spitzer Survey of Stellar Structure in Galaxies (S4G) is a volume, magnitude, and size-limited survey of 2352 nearby galaxies with deep imaging at 3.6 and 4.5um. In this paper we describe our surface photometry pipeline and showcase the associate d data products that we have released to the community. We also identify the physical mechanisms leading to different levels of central stellar mass concentration for galaxies with the same total stellar mass. Finally, we derive the local stellar mass-size relation at 3.6um for galaxies of different morphologies. Our radial profiles reach stellar mass surface densities below 1 Msun pc-2. Given the negligible impact of dust and the almost constant mass-to-light ratio at these wavelengths, these profiles constitute an accurate inventory of the radial distribution of stellar mass in nearby galaxies. From these profiles we have also derived global properties such as asymptotic magnitudes (and the corresponding stellar masses), isophotal sizes and shapes, and concentration indices. These and other data products from our various pipelines (science-ready mosaics, object masks, 2D image decompositions, and stellar mass maps), can be publicly accessed at IRSA (http://irsa.ipac.caltech.edu/data/SPITZER/S4G/).
We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 $mu {rm m}$ images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T $geq$ 0.1, the break radius to bar radius, $r_{rm br}/R_{rm bar}$, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad Resonance (OLR) of the bar, and thus moves outwards as the bar grows. For galaxies with small bulges, B/T $<$ 0.1, $r_{rm br}/R_{rm bar}$ spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.
New surveys such as ESAs Euclid mission and NASAs Nancy Grace Roman Space Telescope are planned to map with unprecedented precision the large-scale structure of the Universe by measuring the 3D positions of tens of millions of galaxies. It is necessa ry to develop theoretically modelled galaxy catalogues to estimate the expected performance and to optimise the analysis strategy of these surveys. We populate two pairs of 1 (Gpc/h)$^3$ volume dark-matter-only simulations from the UNIT project with galaxies using the SAGE semi-analytic model of galaxy formation, coupled to the photoionisation model GET_EMLINES to estimate their Halpha emission. These catalogues represent a unique suite that includes galaxy formation physics and - thanks to the fixed-pair technique used - an effective volume of ~ (5 Gpc/h)$^3$, which is several times larger than the Euclid survey. We study the abundance and clustering of those model star-forming Halpha emission-line galaxies (ELGs). For scales greater than ~5 Mpc/h, we find for the ELGs a scale-independent bias with values in the range b $in$ [1,4.5], increasing with redshift over the interval z $in$ [0.5,2]. Model galaxy properties, including their emission-line fluxes are publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا