ﻻ يوجد ملخص باللغة العربية
Basal plane resistivity of expanded graphite was studied under simultaneous influence of hydrostatic pressure up to 1.8 GPa and magnetic field 0.8 T in the 77-300 K temperature region. Magnetic field induces negative magnetoresistance in the sample within all temperature and pressure range studied. A change in resistivity of the sample under maximum pressure reaches 80%. Significant change in resistivity dependence on temperature under the pressure of 0.6 GPa suggests for ordering transition in the sample studied. Negative magnetoresistance in the graphite reaches about 15% at 0.6 GPa. Magnetic field acts in the same way as pressure and potentiates the transition formation and further magnetoresistance dynamics. The effects observed are mostly of elastic character according to resistivity of the unloaded sample.
We have studied the c-axis interlayer magnetoresistance (ILMR), R_c(B) in graphite. The measurements have been performed on strongly anisotropic highly oriented pyrolytic graphite (HOPG) samples in magnetic field up to B = 9 T applied both parallel a
The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter such as skyrmions and a non-Fermi liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle ne
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measur
The dependence of the superconducting transition temperature T_{c} on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, supercon
The room-temperature longitudinal piezoresistance of n-type and p-type crystalline silicon along selected crystal axes is investigated under uniaxial compressive stresses up to 3 GPa. While the conductance ($G$) of n-type silicon eventually saturates