ﻻ يوجد ملخص باللغة العربية
Let A be a C*-algebra and A** its enveloping von Neumann algebra. C. Akemann suggested a kind of non-commutative topology in which certain projections in A** play the role of open sets. The adjectives open, closed, compact, and relatively compact all can be applied to projections in A**. Two operator inequalities were used by Akemann in connection with compactness. Both of these inequalities are equivalent to compactness for a closed projection in A**, but only one is equivalent to relative compactness for a general projection. A third operator inequality, also related to compactness, was used by the author. It turns out that the study of all three inequalities can be unified by considering a numerical invariant which is equivalent to the distance of a projection from the set of relatively compact projections. Since the subject concerns the relation between a projection and its closure, Tomitas concept of regularity of projections seems relevant, and some results and examples on regularity are also given. A few related results on semicontinuity are also included.
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra
In this short note, we prove that for a $C^*$-algebra $aa$ generated by $n$ elements, $M_{k}(tilde{aa})$ is generated by $k$ mutually unitarily equivalent and almost mutually orthogonal projections for any $kge de(n)=minbig{kinmathbb N,|,(k-1)(k-2)ge
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to
We define a relation < for dual operator algebras. We say that B < A if there exists a projection p in A such that B and pAp are Morita equivalent in our sense. We show that < is transitive, and we investigate the following question: If A < B and B <