ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular signaling networks function as generalized Wiener-Kolmogorov filters to suppress noise

184   0   0.0 ( 0 )
 نشر من قبل Michael Hinczewski
 تاريخ النشر 2014
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov (WK) optimal noise filter. Using concepts from umbral calculus, we generalize the linear WK theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function---like ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways, and the manipulation of pathways through experimental probes like oscillatory input.



قيم البحث

اقرأ أيضاً

Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, w e create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian clock which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24h period. Yet, a limit-cycle oscillator is not essential for k nowing the time, as exemplified by bacteria that possess an hourglass: a system that when forced by an oscillatory light input exhibits robust oscillations from which the organism can infer the time, but that in the absence of driving relaxes to a stable fixed point. Here, using models of the Kai system of cyanobacteria, we compare a limit- cycle oscillator with two hourglass models, one that without driving relaxes exponentially and one that does so in an oscillatory fashion. In the limit of low input-noise, all three systems are equally informative on time, yet in the regime of high input-noise the limit-cycle oscillator is far superior. The same behavior is found in the Stuart-Landau model, indicating that our result is universal.
143 - Evan J. Molinelli 2013
We present a new experimental-computational technology of inferring network models that predict the response of cells to perturbations and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is measured in terms of levels of proteins and phospho-proteins and of cellular phenotype such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, belief propagation, which is three orders of magnitude more efficient than Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in Skmel-133 melanoma cell lines, which are resistant to the therapeutically important inhibition of Raf kinase. The resulting network models reproduce and extend known pathway biology. They can be applied to discover new molecular interactions and to predict the effect of novel drug perturbations, one of which is verified experimentally. The technology is suitable for application to larger systems in diverse areas of molecular biology.
Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that p ropagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the real-time estimate constructed by the system. It helps us understand how the structure of a biological network, and the response times of its components, influences the accuracy of that estimate. The theory also provides insights into how evolution may have tuned enzyme kinetic parameters and populations to optimize information transfer.
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensit ive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا