ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Scale Jacobi Method for Anderson Localization

207   0   0.0 ( 0 )
 نشر من قبل John Imbrie
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Z. Imbrie




اسأل ChatGPT حول البحث

A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization [arXiv:1403.7837].



قيم البحث

اقرأ أيضاً

195 - John Z. Imbrie 2017
We prove localization and probabilistic bounds on the minimum level spacing for the Anderson tight-binding model on the lattice in any dimension, with single-site potential having a discrete distribution taking N values, with N large.
We prove localization and probabilistic bounds on the minimum level spacing for a random block Anderson model without monotonicity. Using a sequence of narrowing energy windows and associated Schur complements, we obtain detailed probabilistic inform ation about the microscopic structure of energy levels of the Hamiltonian, as well as the support and decay of eigenfunctions.
529 - John Z. Imbrie 2014
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local unitary transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors.
We apply Feshbach-Krein-Schur renormalization techniques in the hierarchical Anderson model to establish a criterion on the single-site distribution which ensures exponential dynamical localization as well as positive inverse participation ratios and Poisson statistics of eigenvalues. Our criterion applies to all cases of exponentially decaying hierarchical hopping strengths and holds even for spectral dimension $d > 2$, which corresponds to the regime of transience of the underlying hierarchical random walk. This challenges recent numerical findings that the spectral dimension is significant as far as the Anderson transition is concerned.
100 - John Z Imbrie 2016
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا