ﻻ يوجد ملخص باللغة العربية
The study of winds in active galactic nuclei (AGN) is of utmost importance as they may provide the long sought-after link between the central black hole and the host galaxy, establishing the AGN feedback. Recently, Laha et al. (2014) reported the X-ray analysis of a sample of 26 Seyferts observed with XMM-Newton, which are part of the so-called warm absorbers in X-rays (WAX) sample. They claim the non-detection of Fe K absorbers indicative of ultra-fast outflows (UFOs) in four observations previously analyzed by Tombesi et al. (2010). They mainly impute the Tombesi et al. detections to an improper modeling of the underlying continuum in the E=4-10 keV band. We therefore re-address here the robustness of these detections and we find that the main reason for the claimed non-detections is likely due to their use of single events only spectra, which reduces the total counts by 40%. Performing a re-analysis of the data in the whole E=0.3-10 keV energy band using their models and spectra including also double events, we find that the blue-shifted Fe K absorption lines are indeed detected at >99%. This work demonstrates the robustness of these detections in XMM-Newton even including complex model components such as reflection, relativistic lines and warm absorbers.
The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its
We present the results of a uniform and systematic search for blue-shifted Fe K absorption lines in the X-ray spectra of five bright Broad-Line Radio Galaxies (BLRGs) observed with Suzaku. We detect, for the first time at X-rays in radio-loud AGN, se
Outflows are observed in a variety of astrophysical sources. Remarkably, ultra-fast ($vgeq 0.1c$), outflows in the UV and X-ray bands are often seen in AGNs. Depending on their energy and mass outflow rate, respectively $dot{E}_{out}, dot{M}_{out}$,
Among a number of active galactic nuclei (AGNs) that drive ionized outflows in X-rays, a low-redshift (z = 0.184) quasar, PDS 456, is long known to exhibit one of the exemplary ultra-fast outflows (UFOs). However, the physical process of acceleration
Blueshifted absorption lines in the X-ray spectra of AGN show that ultra-fast outflows with typical velocities $v sim 0.1c$ are a common feature of these luminous objects. Such powerful AGN winds offer an explanation of the observed M-$sigma$ relatio