ﻻ يوجد ملخص باللغة العربية
We have studied magnetoresistance and Hall effects for 1.8-nm-thick Pt films grown on a ferrimagnetic insulator Y3Fe5O12 in a wide temperature (0.46-300 K) and magnetic-field (-15-15 T) region. In the low-temperature regime where quantum corrections to conductivity are observed, weak antilocalization behavior observed in Pt films is critically suppressed when the film is attached to Y3Fe5O12. Hall resistance in the Pt film is also affected by Y3Fe5O12, and it exhibits logarithmic temperature dependence in a broad temperature range. The magnetotransport properties in the high-field range are significantly influenced by the interface between Pt and Y3Fe5O12.
In a recent Letter [Y.M. Lu et al., Phys. Rev. Lett. 110, 147207 (2013)], Lu et al. reported on ferromagneticlike transport properties of thin films of Pt, deposited ex situ via sputtering on the ferrimagnetic insulator Y3Fe5O12. The authors found a
Epitaxial Y3Fe5O12 thin films have been deposited by off-axis sputtering, which exhibit excellent crystalline quality, enabling observation of large spin pumping signals in Pt/Y3Fe5O12 and W/Y3Fe5O12 bilayers driven by cavity ferromagnetic resonance.
Structural, magnetic and magnetotransport properties of (Bi$_{1-x}$Eu$_x$)$_2$Se$_3$ thin films have been studied experimentally as a function of Eu content. The films were synthesized by MBE. It is demonstrated that Eu distribution is not uniform, i
We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way esta
Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free f