ترغب بنشر مسار تعليمي؟ اضغط هنا

Age, size, and position of H ii regions in the Galaxy. Expansion of ionized gas in turbulent molecular clouds

138   0   0.0 ( 0 )
 نشر من قبل Pascal Tremblin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work aims at improving the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulent level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed to date large sample of OB associations and was used on the H ii Region Discovery Survey (HRDS). Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson laws. The 3D turbulence is taken into account by an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well-known regions such as Rosette, RCW 36, RCW 79, and M16. We thus propose that this method can be used to give ages of young OB associations through the Galaxy such as the HRDS survey and also in nearby extra-galactic sources.



قيم البحث

اقرأ أيضاً

127 - Jeong-Gyu Kim 2016
Dynamical expansion of H II regions around star clusters plays a key role in dispersing the surrounding dense gas and therefore in limiting the efficiency of star formation in molecular clouds. We use a semi-analytic method and numerical simulations to explore expansion of spherical dusty H II regions and surrounding neutral shells and the resulting cloud disruption. Our model for shell expansion adopts the static solutions of Draine (2011) for dusty H II regions and considers the contact outward forces on the shell due to radiation and thermal pressures as well as the inward gravity from the central star and the shell itself. We show that the internal structure we adopt and the shell evolution from the semi-analytic approach are in good agreement with the results of numerical simulations. Strong radiation pressure in the interior controls the shell expansion indirectly by enhancing the density and pressure at the ionization front. We calculate the minimum star formation efficiency $epsilon_{min}$ required for cloud disruption as a function of the clouds total mass and mean surface density. Within the adopted spherical geometry, we find that typical giant molecular clouds in normal disk galaxies have $epsilon_{min} lesssim 10$%, with comparable gas and radiation pressure effects on shell expansion. Massive cluster-forming clumps require a significantly higher efficiency of $epsilon_{min} gtrsim 50$% for disruption, produced mainly by radiation-driven expansion. The disruption time is typically of the order of a free-fall timescale, suggesting that the cloud disruption occurs rapidly once a sufficiently luminous H II region is formed. We also discuss limitations of the spherical idealization.
The nature of ultracompact H II regions (UCHRs) remains poorly determined. In particular, they are about an order of magnitude more common than would be expected if they formed around young massive stars and lasted for one dynamical time, around 10^4 yr. We here perform three-dimensional numerical simulations of the expansion of an H II region into self-gravitating, radiatively cooled gas, both with and without supersonic turbulent flows. In the laminar case, we find that H II region expansion in a collapsing core produces nearly spherical shells, even if the ionizing source is off-center in the core. This agrees with analytic models of blast waves in power-law media. In the turbulent case, we find that the H II region does not disrupt the central collapsing region, but rather sweeps up a shell of gas in which further collapse occurs. Although this does not constitute triggering, as the swept-up gas would eventually have collapsed anyway, it does expose the collapsing regions to ionizing radiation. We suggest that these regions of secondary collapse, which will not all themselves form massive stars, may form the bulk of observed UCHRs. As the larger shell will take over 10^5 years to complete its evolution, this could solve the timescale problem. Our suggestion is supported by the ubiquitous observation of more diffuse emission surrounding UCHRs.
We examine new and pre-existing wide-field, continuum-corrected, narrowband images in H$_2$ 1-0 S(1) and Br$gamma$ of three regions of massive star formation: IC 1396, Cygnus OB2, and Carina. These regions contain a variety of globules, pillars, and sheets, so we can quantify how the spatial profiles of emission lines behave in photodissociation regions (PDRs) that differ in their radiation fields and geometries. We have measured 450 spatial profiles of H$_2$ and Br$gamma$ along interfaces between HII regions and PDRs. Br$gamma$ traces photoevaporative flows from the PDRs, and this emission declines more rapidly with distance as the radius of curvature of the interface decreases, in agreement with models. As noted previously, H$_2$ emission peaks deeper into the cloud relative to Br$gamma$, where the molecular gas absorbs far-UV radiation from nearby O-stars. Although PDRs in IC 1396, Cygnus OB2, and Carina experience orders of magnitude different levels of ionizing flux and have markedly differing geometries, all the PDRs have spatial offsets between Br$gamma$ and H$_2$ on the order of $10^{17}$cm. There is a weak negative correlation between the offset size and the intensity of ionizing radiation and a positive correlation with the radius of curvature of the cloud. We can reproduce both the size of the offsets and the dependencies of the offsets on these other variables with simple photoevaporative flow models. Both Br$gamma$ and H$_2$ 1-0 S(1) will undoubtedly be targeted in future JWST observations of PDRs, so this work can serve as a guide to interpreting these images.
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on t he structure, dynamics and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionising radiation eventually stops the accretion (through filaments) toward the massive star-forming regions. The new over-pressured H,{ ormalsize II} regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H,{ ormalsize II} regions expand in a hybrid manner: they virtually do not expand toward the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionised regions grow anisotropically, and the ionising stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H,{ ormalsize II}-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H,{ ormalsize II} regions, producing a net expansion law ($R propto t^alpha$, with $alpha$ in the range of 0.93-1.47 and a mean value of $1.2 pm 0.17$) that differs from any of those of the standard models.
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of $-1.35$ when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا