ترغب بنشر مسار تعليمي؟ اضغط هنا

Planet formation in Binaries

127   0   0.0 ( 0 )
 نشر من قبل Philippe Thebault
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the standard planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.



قيم البحث

اقرأ أيضاً

Our galaxy is full with planets. We now know that planets and planetary systems are diverse and come with different sizes, masses and compositions, as well as various orbital architectures. Although there has been great progress in understanding plan et formation in the last couple of decades, both observationally and theoretically, several fundamental questions remain unsolved. This might not be surprising given the complexity of the process that includes various physical and chemical processes, and spans huge ranges of length-scales, masses, and timescales. In addition, planet formation cannot be directly observed but has to be inferred by gluing together different pieces of information into one consistent picture. How do planets form? remains a fundamental question in modern astrophysics. In this review we list some of the key open questions in planet formation theory as well as the challenges and upcoming opportunities.
Using high-resolution echelle spectra obtained with Magellan/MIKE, we present a chemical abundance analysis of both stars in the planet-hosting wide binary system HD20782 + HD20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters $lesssim 0.2,$ AU. We investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperatures ($T_{C}approx 40-1660,$ K). The two stars are found to have a mean element-to-element abundance difference of $0.04pm0.07,$ dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements ($T_{C} > 900,$ K) exhibit a positive correlation between abundance (relative to solar) and $T_{C}$, with similar slopes of $approx$ $1times10^{-4},$ dex K$^{-1}$. The measured positive correlations are not perfect; both stars exhibit a scatter of $approx$ $5times10^{-5},$ dex K$^{-1}$ about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive---but imperfect---correlation between refractory elemental abundances and $T_{C}$. Our measured slopes for HD 20782/81 are consistent with what is predicted for the ingestion of 10--20 Earths by both stars.
399 - O. Kulikova 2019
Planet migration originally refers to protoplanetary disks, which are more massive and dense than typical accretion disks in binary systems. We study planet migration in an accretion disk in a binary system consisting of a solar-like star hosting a p lanet and a red giant donor star. The accretion disk is fed by a stellar wind. %, disk self-gravity is neglected. We use the $alpha$-disk model and consider that the stellar wind is time-dependent. Assuming the disk is quasi-stationary we calculate its temperature and surface density profiles. In addition to the standard disk model, when matter is captured by the disk at its outer edge, we study the situation when the stellar wind delivers matter on the whole disc surface inside the accretion radius with the rate depending on distance from the central star. Implying that a planet experiences classical type I/II migration we calculate migration time for a planet on a circular orbit coplanar with the disk. Potentially, rapid inward planet migration can result in a planet-star merger which can be accompanied by an optical or/and UV/X-ray transient. We calculate timescale of migration for different parameters of planets and binaries. Our results demonstrate that planets can fall on their host stars within the lifetime of the late-type donor for realistic sets of parameters.
Dusty protoplanetary disks surrounding young low-mass stars are the birthplaces of planets. Studies of the evolutionary timescales of such disks provide important constraints on the timescales of planet formation. Binary companions, however, can infl uence circumstellar disk evolution through tidal interactions. In order to trace protoplanetary disks and their properties in young binary systems, as well as to study the effect of binarity on circumstellar disk lifetimes, we have carried out spatially resolved spectroscopy for several low-mass binaries in the well-known Orion Nebula Cluster. Br$_{gamma}$ emission, which we detect in several systems, is used as a tracer for the presence of an active accretion disk around a binary component. We find a paucity of actively accreting secondaries, and hence, evidence that in a binary system it is the lower mass component that disperses its disk faster.
The terrestrial planets are believed to have formed by violent collisions of tens of lunar- to Mars-size protoplanets at time t<200 Myr after the protoplanetary gas disk dispersal (t_0). The solar system giant planets rapidly formed during the protop lanetary disk stage and, after t_0, radially migrated by interacting with outer disk planetesimals. An early (t<100 Myr) dynamical instability is thought to have occurred with Jupiter having gravitational encounters with a planetary-size body, jumping inward by ~0.2-0.5 au, and landing on its current, mildly eccentric orbit. Here we investigate how the giant planet instability affected formation of the terrestrial planets. We study several instability cases that were previously shown to match many solar system constraints. We find that resonances with the giant planets help to remove solids available for accretion near ~1.5 au, thus stalling the growth of Mars. It does not matter, however, whether the giant planets are placed on their current orbits at t_0 or whether they realistically evolve in one of our instability models; the results are practically the same. The tight orbital spacing of Venus and Earth is difficult to reproduce in our simulations, including cases where bodies grow from a narrow annulus at 0.7-1 au, because protoplanets tend to radially spread during accretion. The best results are obtained in the narrow-annulus model when protoplanets emerging from the dispersing gas nebula are assumed to have (at least) the Mars mass. This suggests efficient accretion of the terrestrial protoplanets during the first ~10 Myr of the solar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا