ﻻ يوجد ملخص باللغة العربية
In some non-regular statistical estimation problems, the limiting likelihood processes are functionals of fractional Brownian motion (fBm) with Hursts parameter H; 0 < H <=? 1. In this paper we present several analytical and numerical results on the moments of Pitman estimators represented in the form of integral functionals of fBm. We also provide Monte Carlo simulation results for variances of Pitman and asymptotic maximum likelihood estimators.
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractiona
We discuss some extensions of results from the recent paper by Chernoyarov et al. (Ann. Inst. Stat. Math., October 2016) concerning limit distributions of Bayesian and maximum likelihood estimators in the model signal plus white noise with irregular
In this paper, we will construct the Malliavin derivative and the stochastic integral with respect to the Mixed fractional Brownian motion (mfbm) for H > 1/2. As an application, we try to estimate the drift parameter via Malliavin derivative for surplus process with mixed fractional Brownian motion
In this paper we consider approximations to the popular Pitman-Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation erro