ترغب بنشر مسار تعليمي؟ اضغط هنا

The Circumstellar Medium of Massive Stars in Motion

124   0   0.0 ( 0 )
 نشر من قبل Jonathan Mackey
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by comparison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.



قيم البحث

اقرأ أيضاً

420 - J. A. Toala , S. J. Arthur 2011
We study the evolution of the interstellar and circumstellar media around massive stars (M > 40M_{odot}) from the main sequence through to the Wolf-Rayet stage by means of radiationhydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around Wolf-Rayet stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the Wolf-Rayet wind bubbles are the duration of the Red Supergiant (or Luminous Blue Variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that main-sequence bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-main-sequence bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the Wolf-Rayet bubbles S,308, NGC,6888, and RCW,58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.
Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium.
At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphol ogy of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The H$alpha$ emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.
We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M(R) = -18.86 +- 0.21. Its early light curve shows similarities with normal SNe Ib, with a r ise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double-peak. The absolute magnitude at discovery is similar to that of the second peak (M(R) = -18.59 +- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are cleary detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectro-photometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. (2012) that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.
352 - R. Q. Wu , C. H. Zhu , G. L. Lu 2021
Employing the the stellar evolution code (Modules for Experiments in Stellar Astrophysics), we calculate yields of heavy elements from massive stars via stellar wind and core-collapse supernovae (CCSN) ejecta to interstellar medium (ISM). In our mode ls, the initial masses ($M_{rm ini}$) of massive stars are taken from 13 to 80 $M_odot$, their initial rotational velocities (V) are 0, 300 and 500 km s$^{-1}$, and their metallicities are [Fe/H] = -3, -2, -1, and 0. The yields of heavy elements coming from stellar winds are mainly affected by the stellar rotation which changes the chemical abundances of stellar surfaces via chemically homogeneous evolution, and enhances mass-loss rate. We estimate that the stellar wind can produce heavy element yields of about $10^{-2}$ (for low metallicity models) to several $M_odot$ (for low metallicity and rapid rotation models) mass. The yields of heavy element produced by CCSN ejecta also depend on the remnant mass of massive mass which is mainly determined by the mass of CO-core. Our models calculate that the yields of heavy elements produced by CCSN ejecta can get up to several $M_odot$. Compared with stellar wind, CCSN ejecta has a greater contribution to the heavy elements in ISM. We also compare the $^{56}$Ni yields by calculated in this work with observational estimate. Our models only explain the $^{56}$Ni masses produced by faint SNe or normal SNe with progenitor mass lower than about 25 $M_odot$, and greatly underestimate the $^{56}$Ni masses produced by stars with masses higher than about 30 $M_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا