ﻻ يوجد ملخص باللغة العربية
Recent observational evidence suggests that the coarse angular resolution ($sim20$ FWHM) of single-dish telescopes at sub-mm wavelengths has biased the observed galaxy number counts by blending together the sub-mm emission from multiple sub-mm galaxies (SMGs). We use lightcones computed from an updated implementation of the galform semi-analytic model to generate $50$ mock sub-mm surveys of $0.5$ deg$^2$ at $850$ $mu$m, taking into account the effects of the finite single-dish beam in a more accurate way than has been done previously. We find that blending of SMGs does lead to an enhancement of source extracted number counts at bright fluxes ($S_{mathrm{850}mumathrm{m}}gtrsim1$ mJy). Typically, $sim3{-}6$ galaxies contribute $90%$ of the flux of an $S_{850mumathrm{m}}=5$ mJy source and these blended galaxies are physically unassociated. We find that field-to-field variations are comparable to Poisson fluctuations for our $S_{850mumathrm{m}}>5$ mJy SMG population, which has a median redshift $z_{50}=2.0$, but are greater than Poisson for the $S_{850mumathrm{m}}>1$ mJy population ($z_{50}=2.8$). In a detailed comparison to a recent interferometric survey targeted at single-dish detected sources, we reproduce the difference between single-dish and interferometer number counts and find a median redshift ($z_{50}=2.5$) in excellent agreement with the observed value ($z_{50}=2.5pm 0.2$). We also present predictions for single-dish survey number counts at $450$ and $1100$ $mu$m, which show good agreement with observational data.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems
We present sub-mm photometry for 11 Hyperluminous Infrared Galaxies (HLIRGs) and use radiative transfer models for starbursts and AGN to investigate the IR emission. In all sources both a starburst and AGN are required to explain the IR emission. The
The study of the linear and circular polarization in AGN allows one to gain detailed information about the properties of the magnetic fields in these objects. However, especially the observation of circular polarization (CP) with single-dish radio-te
Dust emission at sub-millimetre wavelengths allows us to trace the early phases of star formation in the Universe. In order to understand the physical processes involved in this mode of star formation, it is essential to gain knowledge about the dark
Line-intensity mapping, being an imperfect observation of the line-intensity field in a cosmological volume, will be subject to various anisotropies introduced in observation. Existing literature in the context of CO and [C II] line-intensity mapping