ﻻ يوجد ملخص باللغة العربية
We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is compared to other approaches in the literature and found to be advantageous for the determination of the equation of state up to large magnetic fields. Thermodynamic observables including the longitudinal and transverse pressure, magnetization, energy density, entropy density and interaction measure are presented for a wide range of temperatures and magnetic fields, and provided in ancillary files. The behavior of these observables confirms our previous result that the transition temperature is reduced by the magnetic field. We calculate the magnetic susceptibility and permeability, verifying that the thermal QCD medium is paramagnetic around and above the transition temperature, while we also find evidence for weak diamagnetism at low temperatures.
Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in
In this proceedings we discuss the natural connection between the reduction of neutral pion mass in the vacuum, and the magnetic catalysis as well as the reduction of transition temperature in the external magnetic field. We also present the first re
We present results for the equation of state in (2+1)-flavor QCD using the highly improved staggered quark action and lattices with temporal extent $N_{tau}=6,~8,~10$, and $12$. We show that these data can be reliably extrapolated to the continuum li
We investigate, by numerical lattice simulations, the static quark-antiquark potential, the flux tube properties and the chiral condensate for $N_f = 2+1$ QCD with physical quark masses in the presence of strong magnetic fields, going up to $eB = 9$
We study light meson properties in a magnetic field, focusing on a charged pion and a charged and polarized rho meson, in quenched lattice QCD. The gauge-invariant density-density correlators are calculated to investigate the deformation caused by th