ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic quasinormal modes of an asymptotically Lifshitz black hole

167   0   0.0 ( 0 )
 نشر من قبل Alfredo Lopez Ortega
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Lopez-Ortega




اسأل ChatGPT حول البحث

Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotically Lifshitz black hole. Based on the values obtained for the quasinormal frequencies we discuss the classical stability of the quasinormal modes. We also study whether the electromagnetic field possesses unstable modes in the D-dimensional Lifshitz spacetime.



قيم البحث

اقرأ أيضاً

We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal mo des for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs are compared with QNMs of Reisner-Nordstr{o}m black hole, it is done by fixing some of the parameters that characterize the black holes and varying another. We observed that the parameter that is related one effective cosmological constant at small distances , determines the behaviors of the QNMs of regular black hole with charge.
We study scalar perturbations for a four-dimensional asymptotically Lifshitz black hole in conformal gravity with dynamical exponent z=0, and spherical topology for the transverse section, and we find analytically and numerically the quasinormal mode s for scalar fields for some special cases. Then, we study the stability of these black holes under scalar field perturbations and the greybody factors.
We calculate exactly the QNF of the vector type and scalar type electromagnetic fields propagating on a family of five-dimensional topological black holes. To get a discrete spectrum of quasinormal frequencies for the scalar type electromagnetic fiel d we find that it is necessary to change the boundary condition usually imposed at the asymptotic region. Furthermore for the vector type electromagnetic field we impose the usual boundary condition at the asymptotic region and we discuss the existence of unstable quasinormal modes in the five-dimensional topological black holes.
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spe ctrum of quasinormal frequencies, but there are unstable quasinormal modes. In the framework of the Hod and Maggiore proposals we also discuss the consequences of these results on the form of the entropy spectrum for the two-dimensional black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا