ترغب بنشر مسار تعليمي؟ اضغط هنا

Highlights and Discoveries from the Chandra X-ray Observatory

155   0   0.0 ( 0 )
 نشر من قبل Martin C. Weisskopf
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASAs Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.



قيم البحث

اقرأ أيضاً

The Pierre Auger Observatory is the worlds largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancem ents are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our X$_{max}$ data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.
140 - John Pretz 2015
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 Te V gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a number of AGN have been observed. We discuss the science of HAWC, summarize the status of the experiment, and highlight first results from analysis of the data.
95 - Daniel A. Schwartz 2004
I review the operational capabilities of the Chandra X-ray Observatory, including some of the spectacular results obtained by the general observer community. A natural theme of this talk is that Chandra is revealing outflows of great quantities of en ergy that were not previously observable. I highlight the Chandra studies of powerful X-ray jets. This subject is only possible due to the sub-arcsecond resolution of the X-ray telescope.
200 - K. G. Elshamouty 2013
The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke et al. (2010) measured a 3.6+/-0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archi val data from the Chandra X-ray Observatory ACIS-S detector in Graded mode. Page et al. (2011) and Shternin et al. (2011) attributed this decay to enhanced neutrino emission from a superfluid neutron transition in the core. Here we test this decline, combining analysis of the Cas A NS using all Chandra X-ray detectors and modes (HRC-S, HRC-I, ACIS-I, ACIS-S in Faint mode, and ACIS-S in Graded mode) and adding a 2012 May ACIS-S Graded mode observation, using the most current calibrations (CALDB 4.5.5.1). We measure the temperature changes from each detector separately and test for systematic effects due to the nearby filaments of the supernova remnant. We find a 0.92%-2.0% decay over 10 years in the effective temperature, inferred from HRC-S data, depending on the choice of source and background extraction regions, with a best-fit decay of 1.0+/-0.7%. In comparison, the ACIS-S Graded data indicate a temperature decay of 3.1%-5.0% over 10 years, with a best-fit decay of 3.5+/-0.4%. Shallower observations using the other detectors yield temperature decays of 2.6+/-1.9% (ACIS-I), 2.1+/-1.0% (HRC-I), and 2.1+/-1.9% (ACIS-S Faint mode) over 10 years. Our best estimate indicates a decline of 2.9+/-0.9 (stat) +1.6/-0.3 (sys) % over 10 years. The complexity of the bright and varying supernova remnant background makes a definitive interpretation of archival Cas A Chandra observations difficult. A temperature decline of 1-3.5% over 10 years would indicate extraordinarily fast cooling of the NS that can be regulated by superfluidity of nucleons in the stellar core.
Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10 keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each ~20 min duration) between mid-December 2003 and mid-April 20 04. These observations aimed at searching for Earths soft (<2 keV) X-ray aurora in a comparative study with Jupiters X-ray aurora, where a pulsating X-ray hot-spot has been previously observed by Chandra. The first Chandra soft X-ray observations of Earths aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا