ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

147   0   0.0 ( 0 )
 نشر من قبل Tingyi Gu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population and temperature variations. We experimentally demonstrate effective tuning of the radio frequency (RF) tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters.



قيم البحث

اقرأ أيضاً

We experimentally demonstrate high Quality factor dual-polarized TE-TM photonic crystal nanobeam cavities. The free-standing nanobeams are fabricated in a 500 nm thick silicon layer, and are probed using both tapered optical fiber and free-space reso nant scattering set-ups. We measure Q-factors greater than 10^4 for both TM and TE modes, and observe large fiber transmission drops (0.3 -- 0.4) at the TM mode resonances.
Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally-tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectromet er. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band, and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.
113 - Ying Li , Jiangjun Zheng , Jie Gao 2010
We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on a mode-gap photonic crystal cavities with light localization in an air mode with 0.02(lambda/n)3 mo dal volumes while preserving optical cavity Q up to 5 x 106. The mechanical mode is modeled to have fundamental resonance omega_m/2pi of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters.
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed cavities with theoretical Quality factors as high as 14 million. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a Quality factor of nearly 750,000. The effect of cavity size on mode frequency and Quality factor was simulated and then verified experimentally.
We describe the design, fabrication, and spectroscopy of coupled, high Quality (Q) factor silicon nanobeam photonic crystal cavities. We show that the single nanobeam cavity modes are coupled into even and odd superposition modes, and we simulate the frequency and Q factor as a function of nanobeam spacing, demonstrating that a differential wavelength shift of 70 nm between the two modes is possible while maintaining Q factors greater than 10^6. For both on-substrate and free-standing nanobeams, we experimentally monitor the response of the even mode as the gap is varied, and measure Q factors as high as 200,000.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا