ﻻ يوجد ملخص باللغة العربية
We calculate the free energy, entropy and pressure of the Quark Gluon Plasma (QGP) at finite temperature and density with a given fraction of spin-up and spin-down quarks using a MIT bag model with corrections up to ${cal O} (g^4 ln g^2)$. The expressions for the specific heat and the spin susceptibility are derived in terms of Fermi momentum and temperature. The effects of interaction between the quarks on the properties of the QGP phase are also investigated. Within our phenomenological model, we estimate the transition temperature $T_c$ by constructing the phase boundary between the hadronic phase and the QGP phase. Finally, we compute the equation of state of the QGP and its dependence on the temperature and the density.
The previous thermodynamic treatment for models with density and/or temperature dependent quark masses is shown to be inconsistent with the requirement of fundamental thermodynamics. We therefore study a fully self-consistent one according to the fun
We extend the effective dynamical quasi-particle model (DQPM) - constructed for the description of non-perturbative QCD phenomena of the strongly interacting quark-gluon plasma (QGP) - to large baryon chemical potentials including a critical end-poin
Quark-gluon plasma (QGP) droplet formation is re-considered with the addition of three loop correction to the earlier loop factors in the mean field potential. The correction of the three loop factor increases stability in the droplet formations of Q
The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term,
The collisional energy gain of a heavy quark due to chromo-electromagnetic field fluctuations in a quark-gluon plasma is investigated. The field fluctuations lead to an energy gain of the quark for all temperatures and velocities. The net effect is a