ترغب بنشر مسار تعليمي؟ اضغط هنا

An optical--near-IR study of a triplet of super star clusters in the starburst core of M82

152   0   0.0 ( 0 )
 نشر من قبل Nate Bastian
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy, and archival HST imaging of the triplet of super star clusters (A1, A2 and A3) in the core of the M82 starburst. Using model fits to the STIS spectra, and the weakness of red supergiant CO absorption features (appearing at ~6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are $4.5pm1.0$~Myr. A1 has strong CO bands, consistent with our previously determined age of $6.4pm0.5$~Myr. The photometric masses of the three clusters are 4--$7times10^5$~Msol, and their sizes are $R_{rm eff}=159$, 104, 59~mas ($sim$2.8, 1.8, 1.0~pc) for A1,2 and 3. The STIS spectra yielded radial velocities of $320pm2$, $330pm6$, and $336pm5$~kms for A1,2, and 3, placing them at the eastern end of the $x_2$ orbits of M82s bar. Clusters A2 and A3 are in high density (800--1000~cmt) environments, and like A1, are surrounded by compact Htwo regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We propose that the 3 clusters were formed textit{in-situ} on the outer $x_2$ orbits in regions of dense molecular gas subsequently ionized by the rapidly evolving starburst. The similar radial velocities of the 3 clusters and their small projected separation of $sim 25$~pc suggest that they may merge in the near future unless this is prevented by velocity shearing.



قيم البحث

اقرأ أيضاً

Like other starburst galaxies, M82 hosts compact, massive young star clusters that are interesting both in their own right and as benchmarks for population synthesis models. Can spectral synthesis models at resolutions around 1000 adequately reproduc e the near-IR spectral features and the energy distribution of these clusters between 0.8 and 2.4 microns? How do the derived cluster properties compare with previous results from optical studies? We analyse the spectra of 5 massive clusters in M82, using data acquired with the spectrograph SpeX on the InfraRed Telescope Facility (NASA/IRTF) and a new population synthesis tool with a highly improved near-IR extension, based on a recent collection of empirical and theoretical spectra of red supergiant stars. We obtain excellent fits across the near-IR with models at quasi-solar metallicity and a solar neighbourhood extinction law. Spectroscopy breaks a strong degeneracy between age and extinction in the near-IR colours in the red supergiant-dominated phase of evolution. The estimated near-IR ages cluster between 9 and 30 Myr, i.e. the ages at which the molecular bands due to luminous red supergiants are strongest in the current models. They do not always agree with optical spectroscopic ages. Adding optical data sometimes leads to the rejection of the solar neighbourhood extinction law. This is not surprising considering small-scale structure around the clusters, but it has no significant effect on the near-IR based spectroscopic ages. [abridged]
We present optical spectroscopy obtained with the Space Telescope Imaging Spectrograph (STIS) of five young massive star clusters in the starburst galaxy M82. A detailed analysis is performed for one cluster `M82-A1 and its immediate environment in t he starburst core. From HST archive images, we find that it is elliptical with an effective radius of 3.0+/-0.5 pc and is surrounded by a compact (r=4.5+/-0.5 pc) H II region. We determine the age and reddening of M82-A1 using synthetic spectra from population synthesis models by fitting both the continuum energy distribution and the depth of the Balmer jump. We find an age of 6.4+/-0.5 Myr and a photometric mass estimate of M=7-13 x 10^5 solar masses. We associate its formation with the most recent starburst event 4-6 Myr ago. We find that the oxygen abundance of the H II region surrounding M82-A1 is solar or slightly higher. The H II region has a high pressure P/k = 1-2 x 10^7 cm^-3 K. The diffuse gas in region A has a slightly lower pressure, which together with the broad H alpha emission line width, suggests that both the thermal and turbulent pressures in the M82 starburst core are unusually high. We discuss how this environment has affected the evolution of the cluster wind for M82-A1. We find that the high pressure may have caused the pressure-driven bubble to stall. We also obtain spectroscopic ages for clusters B1-2 and B2-1 in the `fossil starburst region and for the intermediate age clusters F and L. These are consistent with earlier studies and demonstrate that star formation activity, sufficiently intense to produce super star clusters, has been going on in M82 during the past Gyr, perhaps in discrete and localized episodes.
NGC 4945 is a nearby (3.8 Mpc) galaxy hosting a nuclear starburst and Seyfert Type 2 AGN. We use the Atacama Large Millimeter/submillimeter Array (ALMA) to image the 93 GHz (3.2 mm) free-free continuum and hydrogen recombination line emission (H40$al pha$ and H42$alpha$) at 2.2 pc (0.12) resolution. Our observations reveal 27 bright, compact sources with FWHM sizes of 1.4 - 4.0 pc, which we identify as candidate super star clusters. Recombination line emission, tracing the ionizing photon rate of the candidate clusters, is detected in 15 sources, 6 of which have a significant synchrotron component to the 93 GHz continuum. Adopting an age of ~5 Myr, the stellar masses implied by the ionizing photon luminosities are $log_{10}$($M_{star}$/M$_{odot}$) $approx$ 4.7 - 6.1. We fit a slope to the cluster mass distribution and find $beta = -1.8 pm 0.4$. The gas masses associated with these clusters, derived from the dust continuum at 350 GHz, are typically an order of magnitude lower than the stellar mass. These candidate clusters appear to have already converted a large fraction of their dense natal material into stars and, given their small free-fall times of ~0.05 Myr, are surviving an early volatile phase. We identify a point-like source in 93 GHz continuum emission which is presumed to be the AGN. We do not detect recombination line emission from the AGN and place an upper limit on the ionizing photons which leak into the starburst region of $Q_0 < 10^{52}$ s$^{-1}$.
NGC 253 hosts the nearest nuclear starburst. Previous observations show a region rich in molecular gas, with dense clouds associated with recent star formation. We used ALMA to image the 350 GHz dust continuum and molecular line emission from this re gion at 2 pc resolution. Our observations reveal ~14 bright, compact (~2-3 pc FWHM) knots of dust emission. Most of these sources are likely to be forming super star clusters (SSCs) based on their inferred dynamical and gas masses, association with 36 GHz radio continuum emission, and coincidence with line emission tracing dense, excited gas. One source coincides with a known SSC, but the rest remain invisible in Hubble near-infrared (IR) imaging. Our observations imply that gas still constitutes a large fraction of the overall mass in these sources. Their high brightness temperature at 350 GHz also implies a large optical depth near the peak of the IR spectral energy distribution. As a result, these sources may have large IR photospheres and the IR radiation force likely exceeds L/c. Still, their moderate observed velocity dispersions suggest that feedback from radiation, winds, and supernovae are not yet disrupting most sources. This mode of star formation appears to produce a large fraction of stars in the burst. We argue for a scenario in which this phase lasts ~1 Myr, after which the clusters shed their natal cocoons but continue to produce ionizing photons. The strong feedback that drives the observed cold gas and X-ray outflows likely occurs after the clusters emerge from this early phase.
Young massive clusters play an important role in the evolution of their host galaxies, and feedback from the high-mass stars in these clusters can have profound effects on the surrounding interstellar medium. The nuclear starburst in the nearby galax y NGC253 at a distance of 3.5 Mpc is a key laboratory in which to study star formation in an extreme environment. Previous high resolution (1.9 pc) dust continuum observations from ALMA discovered 14 compact, massive super star clusters (SSCs) still in formation. We present here ALMA data at 350 GHz with 28 milliarcsecond (0.5 pc) resolution. We detect blueshifted absorption and redshifted emission (P-Cygni profiles) towards three of these SSCs in multiple lines, including CS 7$-$6 and H$^{13}$CN 4$-$3, which represents direct evidence for previously unobserved outflows. The mass contained in these outflows is a significant fraction of the cluster gas masses, which suggests we are witnessing a short but important phase. Further evidence of this is the finding of a molecular shell around the only SSC visible at near-IR wavelengths. We model the P-Cygni line profiles to constrain the outflow geometry, finding that the outflows must be nearly spherical. Through a comparison of the outflow properties with predictions from simulations, we find that none of the available mechanisms completely explains the observations, although dust-reprocessed radiation pressure and O star stellar winds are the most likely candidates. The observed outflows will have a very substantial effect on the clusters evolution and star formation efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا