ﻻ يوجد ملخص باللغة العربية
We analyse processes of electron acceleration in the Fermi Bubbles in order to define parameters and restrictions of the models, which are suggested for the origin of these giant radio and gamma-ray structures. In the case of leptonic origin of the nonthermal radiation from the Bubbles, these electrons should be produced somehow in-situ because of relatively short lifetime of high energy electrons, which lose their energy by synchrotron and inverse Compton processes. It has been suggested that electrons in Bubbles may be accelerated by shocks produced by tidal disruption of star accreting onto the central black hole or a process of re-acceleration of electrons ejected by supernova remnants. These processes will be investigated in subsequent papers. In this paper we focus to study in-situ stochastic (Fermi) acceleration by a hydromagnetic/supersonic turbulence, in which electrons can be directly accelerated from the background plasma. We showed that the acceleration from the background plasma is able to explain the observed fluxes of radio and gamma-ray emission from the Bubbles but the range of permitted parameters of the model is strongly restricted.
We analyse the origin of the gamma-ray flux from the Fermi Bubbles (FBs) in the framework of the hadronic model in which gamma-rays are produced by collisions of relativistic protons with the protons of background plasma in the Galactic halo. It is a
We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emissio
We give a short review of processes of stochastic acceleration in the Galaxy. We discuss: how to estimate correctly the number of accelerated particles, and at which condition the stochastic mechanism is able to generate power-law nonthermal spectra.
Fermi LAT has discovered two extended gamma-ray bubbles above and below the galactic plane. We propose that their origin is due to the energy release in the Galactic center (GC) as a result of quasi-periodic star accretion onto the central black hole
The discovery of the Fermi bubbles---a huge bilobular structure seen in GeV gamma-rays above and below the Galactic center---implies the presence of a large reservoir of high energy particles at $sim 10 , text{kpc}$ from the disk. The absence of evid