ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of the barlens component in barred galaxies: what do boxy/peanut bulges look like when viewed face-on?

401   0   0.0 ( 0 )
 نشر من قبل Albert Bosma
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Barred galaxies have interesting morphological features whose presence and properties set constraints on galactic evolution. Here we examine barlenses, i.e. lens-like components whose extent along the bar major axis is shorter than that of the bar and whose outline is oval or circular. We identify and analyse barlenses in $N$-body plus SPH simulations, compare them extensively with those from the NIRS0S (Near-IR S0 galaxy survey) and the S$^4$G samples (Spitzer Survey of Stellar Structure in Galaxies) and find very good agreement. We observe barlenses in our simulations from different viewing angles. This reveals that barlenses are the vertically thick part of the bar seen face-on, i.e. a barlens seen edge-on is a boxy/peanut/X bulge. In morphological studies, and in the absence of kinematics or photometry, a barlens, or part of it, may be mistaken for a classical bulge. Thus the true importance of classical bulges, both in numbers and mass, is smaller than currently assumed, which has implications for galaxy formation studies. Finally, using the shape of the isodensity curves, we propose a rule of thumb for measuring the barlens extent along the bar major axis of moderately inclined galaxies, thus providing an estimate of which part of the bar is thicker.



قيم البحث

اقرأ أيضاً

From a sample of 84 local barred, moderately inclined disc galaxies, we determine the fraction which host boxy or peanut-shaped (B/P) bulges (the vertically thickened inner parts of bars). We find that the frequency of B/P bulges in barred galaxies i s a very strong function of stellar mass: 79% of the bars in galaxies with log (M_{star}/M_{sun}) >~ 10.4 have B/P bulges, while only 12% of those in lower-mass galaxies do. (We find a similar dependence in data published by Yoshino & Yamauchi 2015 for edge-on galaxies.) There are also strong trends with other galaxy parameters -- e.g., Hubble type: 77% of S0-Sbc bars, but only 15% of Sc-Sd bars, have B/P bulges -- but these appear to be side effects of the correlations of these parameters with stellar mass. In particular, despite indications from models that a high gas content can suppress bar buckling, we find no evidence that the (atomic) gas mass ratio M_{atomic}/M_{star} affects the presence of B/P bulges, once the stellar-mass dependence is controlled for. The semi-major axes of B/P bulges range from one-quarter to three-quarters of the full bar size, with a mean of R_{box}/L_{bar} = 0.42 +/- 0.09 and R_{box}/a_{max} = 0.53 +/- 0.12 (where R_{box} is the size of the B/P bulge and a_{max} and L_{bar} are lower and upper limits on the size of the bar).
112 - J. Mendez-Abreu 2010
We present high resolution absorption-line spectroscopy of 3 face-on galaxies, NGC 98, NGC 600, and NGC 1703 with the aim of searching for box/peanut (B/P)-shaped bulges. These observations test and confirm the prediction of Debattista et al. (2005) that face-on B/P-shaped bulges can be recognized by a double minimum in the profile of the fourth-order Gauss-Hermite moment h_4. In NGC 1703, which is an unbarred control galaxy, we found no evidence of a B/P bulge. In NGC 98, a clear double minimum in h_4 is present along the major axis of the bar and before the end of the bar, as predicted. In contrast, in NGC 600, which is also a barred galaxy but lacks a substantial bulge, we do not find a significant B/P shape.
We present SAURON integral-field observations of a sample of 12 mid to high-inclination disk galaxies, to unveil hidden bars on the basis of their kinematics, i.e., the correlation between velocity and h3 profiles, and to establish their degree of cy lindrical rotation. For the latter, we introduce a method to quantify cylindrical rotation that is robust against inner disk components. We confirm high-levels of cylindrical rotation in boxy/peanut bulges, but also observe this feature in a few galaxies with rounder bulges. We suggest that these are also barred galaxies with end-on orientations. Re-analysing published data for our own Galaxy using this new method, we determine that the Milky Way bulge is cylindrically rotating at the same level as the strongest barred galaxy in our sample. Finally, we use self-consistent three-dimensional N-body simulations of bar-unstable disks to study the dependence of cylindrical rotation on the bars orientation and host galaxy inclination.
120 - Martinez-Valpuesta , I. 2008
Boxy/peanut bulges in disc galaxies have been associated to stellar bars. We analyse their properties in a large sample of $N$-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare t he results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.
We study the colors and orientations of structures in low and intermediate inclination barred galaxies. We test the hypothesis that barlenses, roundish central components embedded in bars, could form a part of the bar in a similar manner to boxy/pean ut bulges in the edge-on view. A sample of 79 barlens galaxies was selected from the S$^4$G and the NIRS0S surveys. The sizes, ellipticities, and orientations of barlenses were measured and used to define the barlens regions in the color measurements. The orientations of barlenses were studied with respect to those of the thin bars and the line-of-nodes of the disks. For 47 galaxies color maps were constructed using the SDSS images in five optical bands, u, g, r, i, and z. Colors of bars, barlenses, disks, and central regions of the galaxies were measured using two different approaches and color-color diagrams sensitive to metallicity, stellar surface gravity, and short lived stars were constructed. Color differences between the structure components were calculated for each individual galaxy, and presented in histogram form. We find that the colors of barlenses are very similar to those of the surrounding bars, indicating that most probably they form part of the bar. We also find that barlenses have orientations closer to the disk line-of-nodes than to the thin bars, which is consistent with the idea that they are vertically thick, in a similar manner as the boxy/peanut structures in more inclined galaxies. Typically, the colors of barlenses are similar to those of normal E/S0 galaxies. Galaxy by galaxy studies show that in spiral galaxies very dusty barlenses also exist, along with barlenses with rejuvenated stellar populations. The central regions of galaxies are found to be on average redder than bars or barlenses, although galaxies with bluer central peaks also exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا