ترغب بنشر مسار تعليمي؟ اضغط هنا

Warming early Mars with CO2 and H2

111   0   0.0 ( 0 )
 نشر من قبل Ramses Ramirez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of valleys on ancient terrains of Mars suggest that liquid water flowed on the martian surface 3.8 billion years ago or before. The above-freezing temperatures required to explain valley formation could have been transient, in response to frequent large meteorite impacts on early Mars, or they could have been caused by long-lived greenhouse warming. Climate models that consider only the greenhouse gases carbon dioxide and water vapor have been unable to recreate warm surface conditions, given the lower solar luminosity at that time. Here we use a one-dimensional climate model to demonstrate that an atmosphere containing 1.3-4 bar of CO2 and water vapor, along with 5 to 20 percent H2, could have raised the mean surface temperature of early Mars above the freezing point of water. Vigorous volcanic outgassing from a highly reduced early martian mantle is expected to provide sufficient atmospheric H2 and CO2, the latter from the photochemical oxidation of outgassed CH4 and CO, to form a CO2-H2 greenhouse. Such a dense early martian atmosphere is consistent with independent estimates of surface pressure based on cratering data.



قيم البحث

اقرأ أيضاً

Explaining the evidence for surface liquid water on early Mars has been a challenge for climate modelers, as the sun was ~30% less luminous during the late-Noachian. We propose that the additional greenhouse forcing of CO2-H2 collision-induced absorp tion is capable of bringing the surface temperature above freezing and can put early Mars into a limit-cycling regime. Limit cycles occur when insolation is low and CO2 outgassing rates are unable to balance with the rapid drawdown of CO2 during warm weathering periods. Planets in this regime will alternate between global glaciation and transient warm climate phases. This mechanism is capable of explaining the geomorphological evidence for transient warm periods in the martian record. Previous work has shown that collision-induced absorption of CO2-H2 was capable of deglaciating early Mars, but only with high H2 outgassing rates (greater than ~600 Tmol/yr) and at high surface pressures (between 3 to 4 bars). We used new theoretically derived collision-induced absorption coefficients for CO2-H2 to reevaluate the climate limit cycling hypothesis for early Mars. Using the new and stronger absorption coefficients in our 1-dimensional radiative convective model as well as our energy balance model, we find that limit cycling can occur with an H2 outgassing rate as low as ~300 Tmol/yr at surface pressures below 3 bars. Our results agree more closely with paleoparameters for early martian surface pressure and hydrogen abundance.
220 - P. von Paris 2008
Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called faint young Sun problem have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geolo gical evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 partial pressures for the late Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data and model results disappears for the late Archaean and early Proterozoic.
The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.
The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibl y complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.
We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and EUV flux of the young Sun. Impa ct statistics in terms of number, masses, velocities, and angles of asteroid impacts onto the early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and according surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1-D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is most likely sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within about 0.6 Myr after its formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا