ﻻ يوجد ملخص باللغة العربية
Using resolved stellar photometry measured from archival HST imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae that took place in galaxies within 8 Mpc. We fit these color-magnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SNe. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SNe progenitor masses are <20 M_sun. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.
We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and 2 supernova impostors, and from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new HST i
We infer the progenitor mass distribution for 22 historic core-collapse supernovae (CCSNe) using a Bayesian hierarchical model. For this inference, we use the local star formation histories to estimate the age for each supernova (SN). These star form
Multidimensional hydrodynamic simulations of shell convection in massive stars suggest the development of aspherical perturbations that may be amplified during iron core-collapse. These perturbations have a crucial and qualitative impact on the delay
We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the post-bounce
We perform hydrodynamic supernova simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approxim