ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vertical Structure and Kinematics of Grand Design Spirals

104   0   0.0 ( 0 )
 نشر من قبل Victor P. Debattista
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an N-body simulation to study the 3-D density distribution of spirals, and the resulting stellar vertical velocities. Relative to the discs rotation, the phase of the spirals peak density away from the mid-plane trails that at the mid-plane. In addition, at fixed radius the density distribution is azimuthally skewed, having a shallower slope on the trailing side inside corotation and switching to shallower on the leading side beyond corotation. The spirals induce non-zero average vertical velocities, <V_z>, as large as <V_z> ~ 10-20 km/s, consistent with recent observations in the Milky Way. The vertical motions are compressive (towards the mid-plane) as stars enter the spiral, and expanding (away from the mid-plane) as they leave it. Since stars enter the spiral on the leading side outside corotation and on the trailing side within corotation, the relative phase of the expanding and compressive motions switches sides at corotation. Moreover, because stars always enter the spiral on the shallow density gradient side and exit on the steeper side, the expanding motions are larger than the compressing motions.



قيم البحث

اقرأ أيضاً

We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic lo ngitude range of 95$^{circ}$ $< l <$ 126$^{circ}$. The sources trace the Galactic warp reaching to 200$sim$400 pc, and indicate the signature of the warp to 600 pc toward the north Galactic pole. The new results along with previous results in the literature show the maximum height of the Galactic warp is increased with Galactocentric distance. Also, we examined velocities perpendicular to the disk for the sample, and found an oscillatory behavior between the vertical velocities and Galactic heights. This behavior suggests the existence of the bending (vertical density) waves, possibly induced by a perturbing satellite (e.g. passage of the Sagittarius dwarf galaxy).
HII regions in the arms of spiral galaxies are indicators of recent star-forming processes. They may have been caused by the passage of the density wave or simply created by other means near the arms. The study of these regions may give us clues to c larifying the controversy over the existence of a triggering scenario, as proposed in the density wave theory. Using H$alpha$ direct imaging, we characterize the HII regions from a sample of three grand design galaxies: NGC5457, NGC628 and NGC6946. Broad band images in R and I were used to determine the position of the arms. The HII regions found to be associated with arms were selected for the study. The age and the star formation rate of these HII regions was obtained using measures on the H$alpha$ line. The distance between the current position of the selected HII regions and the position they would have if they had been created in the centre of the arm is calculated. A parameter, T, which measures whether a region was created in the arm or in the disc, is defined. With the help of the T parameter we determine that the majority of regions were formed some time after the passage of the density wave, with the regions located `behind the arm (in the direction of the rotation of the galaxy) the zone they should have occupied had they been formed in the centre of the arm. The presence of the large number of regions created after the passage of the arm may be explained by the effect of the density wave, which helps to create the star-forming regions after its passage. There is clear evidence of triggering for NGC5457 and a co-rotation radius is proposed. A more modest triggering seems to exist for NGC628 and non significant evidence of triggering are found for NGC6946.
We analyse the spatially resolved relation between stellar mass (M$_{star}$) and star formation rate (SFR) in disk galaxies (i.e. the Main Sequence, MS). The studied sample includes eight nearby face-on grand-design spirals, e.g. the descendant of hi gh-redshift, rotationally-supported star-forming galaxies. We exploit photometric information over 23 bands, from the UV to the far-IR, from the publicly available DustPedia database to build spatially resolved maps of stellar mass and star formation rates on sub-galactic scales of 0.5-1.5 kpc, by performing a spectral energy distribution fitting procedure that accounts for both the observed and the obscured star formation processes, over a wide range of internal galaxy environments (bulges, spiral arms, outskirts). With more than 30 thousands physical cells, we have derived a definition of the local spatially resolved MS per unit area for disks, $log(Sigma_{SFR})$=0.82log$(Sigma_{*})$-8.69. This is consistent with the bulk of recent results based on optical IFU, using the H$alpha$ line emission as a SFR tracer. Our work extends the analysis at lower sensitivities in both M$_{star}$ and SFR surface densities, up to a factor $sim$ 10. The self consistency of the MS relation over different spatial scales, from sub-galactic to galactic, as well as with a rescaled correlation obtained for high redshift galaxies, clearly proves its universality.
In the second work of this series, we analyse the connection between the availability of gas and the position of a region with respect to the spatially resolved main sequence (MS) relation. Following the procedure presented in Paper I we obtain 500pc scales estimates of stellar mass and star formation rate surface densities ($Sigma_{star}$ and $Sigma_{rm{SFR}}$). Our sample consists of five face-on, grand design spiral galaxies located on the MS. Thanks to HI 21cm and $^{12}$CO(2-1) maps, we connect the gas surface densities and gas fractions to the observed star formation properties of each region. We find that the spatially resolved MS ($sigma=0.23$ dex) is the combination of two relations: the Kennicutt-Schmidt law ($sigma=0.19$ dex) and the molecular gas MS (MGMS, $sigma=0.22$ dex); $Sigma_{star}$, $Sigma_{rm{SFR}}$ and the surface density of the molecular gas, $Sigma_{rm{H_2}}$, define a 3D relation as proposed by citet{2019ApJ...884L..33L}. We find that $Sigma_{rm{H_2}}$ steadily increases along the MS relation, varies little towards higher $Sigma_{rm{SFR}}$ at fixed stellar surface densities (not enough to sustain the change in SFR), and it is almost constant perpendicular to the relation. The surface density of neutral gas ($Sigma_{rm{HI}}$) is constant along the MS, and increases in its upper envelop. $Sigma_{rm{SFR}}$ can be expressed as a function of $Sigma_{star}$ and $Sigma_{rm{HI}}$, following the Equation: $logSigma_{rm{SFR}}$ = 0.97$logSigma_{star}$ + 1.99$logSigma_{rm{HI}}$ - 11.11. Finally, we show that f$_{rm{gas}}$ increases significantly towards the starburst region in the $logSigma_{star}$ - $logSigma_{rm{SFR}}$ plane, accompanied by a slight increase in SFE.
Boxy and peanut-shaped bulges are seen in about half of edge-on disc galaxies. Comparisons of the photometry and major-axis gas and stellar kinematics of these bulges to simulations of bar formation and evolution indicate that they are bars viewed in projection. If the properties of boxy bulges can be entirely explained by assuming they are bars, then this may imply that their hosts are pure disc galaxies with no classical bulge. A handful of these bulges, including that of the Milky Way, have been observed to rotate cylindrically, i.e. with a mean stellar velocity independent of height above the disc. In order to assess whether such behaviour is ubiquitous in boxy bulges, and whether a pure disc interpretation is consistent with their stellar populations, we have analysed the stellar kinematics and populations of the boxy or peanut-shaped bulges in a sample of five edge-on galaxies. We placed slits along the major axis of each galaxy and at three offset but parallel positions to build up spatial coverage. The boxy bulge of NGC3390 rotates perfectly cylindrically within the spatial extent and uncertainties of the data. This is consistent with the metallicity and alpha-element enhancement of the bulge, which are the same as in the disk. This galaxy is thus a pure disc galaxy. The boxy bulge of ESO311-G012 also rotates very close to cylindrically. The boxy bulge of NGC1381 is neither clearly cylindrically nor non-cylindrically rotating, but it has a negative vertical metallicity gradient and is alpha-enhanced with respect to its disc, suggesting a composite bulge comprised of a classical bulge and bar (and possibly a discy pseudobulge) [abridged] Even this relatively small sample is sufficient to demonstrate that boxy bulges display a range of rotational and population properties, indicating that they do not form a homogeneous class of object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا