ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson mixers for terahertz detection

151   0   0.0 ( 0 )
 نشر من قبل Nicolas Bergeal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa2Cu3O7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers, in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies fc of the junctions.



قيم البحث

اقرأ أيضاً

164 - A. Luo , T. Wolf , Y. Wang 2012
In this letter, we present the study of the high-frequency mixing properties of ion irradiated YBa2Cu3O7 Josephson nano-junctions. The frequency range, spanning above and below the characteristic frequencies fc of the junctions, permits clear observa tion of the transition between two mixing regimes. The experimental conversion gain was found to be in good agreement with the prediction of the three ports model. Finally, we discuss the potential of the junctions to build a Josephson mixer operating in the terahertz frequency range.
Stacks of intrinsic Josephson junctions in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta }$ emit intense and coherent terahertz waves determined by the internal electromagnetic cavity resonance. We identify the excited transverse magnetic mode by observing the bro adly tunable emissions from an identical nearly square stack and simulating the scattering spectrum. We employ a wedge-type interferometer to measure emitted integral power independently of the far-field pattern. The simulation results are in good agreement with observed resonance behaviors as a function of frequency.
We demonstrate mutual synchronization of Josephson oscillations in multiple stacks of intrinsic Josephson junctions of the cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta }$. Detailed analysis of the full polarization parameters allows the det ermination of a phase correlation between the stacks: a simultaneous emission state is described by a linear combination of individual emission states with a phase retardation. This proves that the stacks are coupled via a Josephson plasma in a superconducting substrate and the coupling matrices can be extracted from polarization analyses. Our findings suggest a route towards the realization of high-power terahertz sources based on the synchronization of a large number of intrinsic Josephson junctions.
We have constructed a microwave detector based on the voltage switching of an underdamped Josephson junction, that is positioned at a current antinode of a {lambda}/4 coplanar waveguide resonator. By measuring the switching current and the transmissi on through a waveguide capacitively coupled to the resonator at different drive frequencies and temperatures we are able to fully characterize the system and assess its detection efficiency and sensitivity. Testing the detector by applying a classical microwave field with the strength of a single photon yielded a sensitivity parameter of 0.5 in qualitative agreement with theoretical calculations.
Exotic superconductors, such as high T$_C$, topological, and heavy-fermion superconductors, require phase sensitive measurements to determine the underlying pairing. Here we investigate the proximity-induced superconductivity in nanowires of SnTe, wh ere an $spm is^{prime}$ superconducting state is produced that lacks the time-reversal and valley-exchange symmetry of the parent SnTe. This effect, in conjunction with a ferroelectric distortion of the lattice at low temperatures, results in a marked alteration of the properties of Josephson junctions fabricated using SnTe nanowires. This work establishes the existence of a ferroelectric transition in SnTe nanowires and elucidates the role of ferroelectric domain walls on the flow of supercurrent through SnTe weak links. We detail two unique characteristics of these junctions: an asymmetric critical current in the DC Josephson effect and a prominent second harmonic in the AC Josephson effect. Each reveals the broken time-reversal symmetry in the junction. The novel $spm is^{prime}$ superconductivity and the new Josephson effects can be used to investigate fractional vortices [1,2], topological superconductivity in multiband materials [3-5], and new types of Josephson-based devices in proximity-induced multiband and ferroelectric superconductors [6,7].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا