ﻻ يوجد ملخص باللغة العربية
This paper presents a new framework for oriented texture modeling. We introduce a new class of Gaussian fields, called Locally Anisotropic Fractional Brownian Fields, with prescribed local orientation at any point. These fields are a local version of a specific class of anisotropic self-similar Gaussian fields with stationary increments. The simulation of such textures is obtained using a new algorithm mixing the tangent field formulation and a turning band method, this latter method having proved its efficiency for generating stationary anisotropic textures. Numerical experiments show the ability of the method for synthesis of textures with prescribed local orientation.
In this paper we will consider the problem of the numerical simulation of non-Gaussian, scalar random fields with a prescribed correlation structure provided either by a theoretical model or computed on a set of observational data. Although, the nume
Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the
This paper focuses on the outline of some computational methods for the approximate solution of the integral equations for the neuronal firing probability density and an algorithm for the generation of sample-paths in order to construct histograms es
We determine the exact Hausdorff measure functions for the range and level sets of a class of Gaussian random fields satisfying sectorial local nondeterminism and other assumptions. We also establish a Chung-type law of the iterated logarithm. The re
We study the distribution of extensions of a number field $k$ with fixed abelian Galois group $G$, from which a given finite set of elements of $k$ are norms. In particular, we show the existence of such extensions. Along the way, we show that the Ha