ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical potential for light by parametric coupling

110   0   0.0 ( 0 )
 نشر من قبل Mohammad Hafezi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Usually photons are not conserved in their interaction with matter. Consequently, for the thermodynamics of photons, while we have a concept of temperature for energy conservation, there is no equivalent chemical potential for particle number conservation. However, the notion of a chemical potential is crucial in understanding a wide variety of single- and many-body effects, from transport in conductors and semiconductors to phase transitions in electronic and atomic systems. Here we show how a direct modification of the system-bath coupling via parametric oscillation creates an effective chemical potential for photons even in the thermodynamic limit. In particular, we show that the photonic system equilibrates to the temperature of the bath, with a tunable chemical potential that is set by the frequency of the parametric coupler. Specific implementations, using circuit-QED or optomechanics, are feasible using current technologies, and we show a detailed example demonstrating the emergence of Mott insulator-superfluid transition in a lattice of nonlinear oscillators. Our approach paves the way for quantum simulation, quantum sources, and even electron-like circuits with light.



قيم البحث

اقرأ أيضاً

Calibrating the strength of the light-matter interaction is an important experimental task in quantum information and quantum state engineering protocols. The strength of the off-resonant light-matter interaction in multi-atom spin oscillators can be characterized by the coupling rate $Gamma_text{S}$. Here we utilize the Coherently Induced Faraday Rotation (CIFAR) signal for determining the coupling rate. The method is suited for both continuous and pulsed readout of the spin oscillator, relying only on applying a known polarization modulation to the probe laser beam and detecting a known optical polarization component. Importantly, the method does not require changes to the optical and magnetic fields performing the state preparation and probing. The CIFAR signal is also independent of the probe beam photo-detection quantum efficiency, and allows direct extraction of other parameters of the interaction, such as the tensor coupling $zeta_text{S}$, and the damping rate $gamma_text{S}$. We verify this method in the continuous wave regime, probing a strongly coupled spin oscillator prepared in a warm cesium atomic vapour.
The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widoms insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widoms method fails.
The $SU(3)$ spin model with chemical potential corresponds to a simplified version of QCD with static quarks in the strong coupling regime. It has been studied previously as a testing ground for new methods aiming to overcome the sign problem of latt ice QCD. In this work we show that the equation of state and the phase structure of the model can be determined to reasonable accuracy by a linked cluster expansion. In particular, we compute the free energy to 14-th order in the nearest neighbour coupling. The resulting predictions for the equation of state and the location of the critical end point agree with numerical determinations to ${cal O}(1%)$ and ${cal O}(10%)$, respectively. While the accuracy for the critical couplings is still limited at the current series depth, the approach is equally applicable at zero and non-zero imaginary or real chemical potential, as well as to effective QCD Hamiltonians obtained by strong coupling and hopping expansions.
178 - J.-B. Beguin 2020
Observations of thermally driven transverse vibration of a photonic crystal waveguide (PCW) are reported. The PCW consists of two parallel nanobeams with a 240 nm vacuum gap between the beams. Models are developed and validated for the transduction o f beam motion to phase and amplitude modulation of a weak optical probe propagating in a guided mode (GM) of the PCW for probe frequencies far from and near to the dielectric band edge. Since our PCW has been designed for near-field atom trapping, this research provides a foundation for evaluating possible deleterious effects of thermal motion on optical atomic traps near the surfaces of PCWs. Longer term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the GMs of the PCW, thereby enabling opto-mechanics at the quantum level with atoms, photons, and phonons. The experiments and models reported here provide a basis for assessing such goals, including sensing mechanical motion at the Standard Quantum Limit (SQL).
In this study, we analyze how changes in the geometry of a potential energy surface in terms of depth and flatness can affect the reaction dynamics. We formulate depth and flatness in the context of one and two degree-of-freedom (DOF) Hamiltonian nor mal form for the saddle-node bifurcation and quantify their influence on chemical reaction dynamics. In a recent work, Garcia-Garrido, Naik, and Wiggins illustrated how changing the well-depth of a potential energy surface (PES) can lead to a saddle-node bifurcation. They have shown how the geometry of cylindrical manifolds associated with the rank-1 saddle changes en route to the saddle-node bifurcation. Using the formulation presented here, we show how changes in the parameters of the potential energy control the depth and flatness and show their role in the quantitative measures of a chemical reaction. We quantify this role of the depth and flatness by calculating the ratio of the bottleneck-width and well-width, reaction probability (also known as transition fraction or population fraction), gap time (or first passage time) distribution, and directional flux through the dividing surface (DS) for small to high values of total energy. The results obtained for these quantitative measures are in agreement with the qualitative understanding of the reaction dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا