ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Topological Surface State in Three-Dimensional Dirac Semimetal Cd3As2

302   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.



قيم البحث

اقرأ أيضاً

Rapid progress of quantum transport study in topological Dirac semimetal, including observations of quantum Hall effect in two-dimensional (2D) Cd$_{mathrm{3}}$As$_{mathrm{2}}$ samples, has uncovered even more interesting quantum transport properties in high-quality and three-dimensional (3D) samples. However, such 3D Cd$_{mathrm{3}}$As$_{mathrm{2}}$ films with low carrier density and high electron mobility have been hardly obtained. Here we report the growth and characterization of 3D thick Cd$_{mathrm{3}}$As$_{mathrm{2}}$ films adopting molecular beam epitaxy. The highest electron mobility ($mu$ = 3 $times$ 10$^{4}$ cm$^{2}$/Vs) among the reported film samples has been achieved at a low carrier density ($textit{n} = 5$ $times$ 10$^{16}$ cm$^{-3}$). In the magnetotransport measurement, Hall plateau-like structures are commonly observed in spite of the 3D thick films ($textit{t} = 120$ nm). On the other hand, field angle dependence of the plateau-like structures and corresponding Shubunikov-de Haas oscillations rather shows a 3D feature, suggesting the appearance of unconventional magnetic orbit, also distinct from the one described by the semiclassical Weyl-orbit equation.
383 - Z. K. Liu , B. Zhou , Z. J. Wang 2013
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDS s possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states.
316 - L. P. He , Y. T. Jia , S. J. Zhang 2015
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X- ray diffraction study of the three-dimensional topological Dirac semimetal Cd3As2. Superconductivity with Tc ~ 2.0 K is observed at 8.5 GPa. The Tc keeps increasing to about 4.0 K at 21.3 GPa, then shows a nearly constant pressure dependence up to the highest pressure 50.9 GPa. The X-ray diffraction measurements reveal a structure phase transition around 3.5 GPa. Our observation of superconductivity in pressurized topological Dirac semimetal Cd3As2 provides a new candidate for topological superconductor, as argued in a recent point contact study and a theoretical work.
Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and topological magnetic phases. Using high resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity up to 10.2 textrm{AA}{cdot}$eV (1.5 times 10^{6} ms^-1) is seen in samples where the mobility far exceeds 40,000 cm^2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications which can also incorporate topological quantum phenomena in a large gap setting. Our experimental identification of this novel topological 3D Dirac semimetal phase, distinct from a 3D topological insulator phase discovered previously, paves the way for exploring higher dimensional relativistic physics in bulk transport and for realizing novel Fermionic matter such as a Fermi arc nodal metal.
We report an above-room-temperature ferromagnetic state realized in a proximitized Dirac semimetal, which is fabricated by growing typical Dirac semimetal Cd$_3$As$_2$ films on a ferromagnetic garnet with strong perpendicular magnetization. Observed anomalous Hall conductivity with substantially large Hall angles is found to be almost proportional to magnetization and opposite in sign to it. Theoretical calculations based on first-principles electronic structure also demonstrate that the Fermi-level dependent anomalous Hall conductivity reflects the Berry curvature originating in the split Weyl nodes. The present Dirac-semimetal/ferromagnetic-insulator heterostructure will provide a novel platform for exploring Weyl-node transport phenomena and spintronic functions lately proposed for topological semimetals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا