Traditional AI reasoning techniques have been used successfully in many domains, including logistics, scheduling and game playing. This paper is part of a project aimed at investigating how such techniques can be extended to coordinate teams of unmanned aerial vehicles (UAVs) in dynamic environments. Specifically challenging are real-world environments where UAVs and other network-enabled devices must communicate to coordinate -- and communication actions are neither reliable nor free. Such network-centric environments are common in military, public safety and commercial applications, yet most research (even multi-agent planning) usually takes communications among distributed agents as a given. We address this challenge by developing an agent architecture and reasoning algorithms based on Answer Set Programming (ASP). Although ASP has been used successfully in a number of applications, to the best of our knowledge this is the first practical application of a complete ASP-based agent architecture. It is also the first practical application of ASP involving a combination of centralized reasoning, decentralized reasoning, execution monitoring, and reasoning about network communications.