ﻻ يوجد ملخص باللغة العربية
The observed deficit of strongly Lyman-alpha emitting galaxies at z>6.5 is attributed to either increasing neutral hydrogen in the intergalactic medium (IGM) and/or to the evolving galaxy properties. To investigate this, we have performed very deep near-IR spectroscopy of z>7 galaxies using MOSFIRE on the Keck-I Telescope. We measure the Lyman-alpha fraction at z~8 (combined photometric redshift peak at z=7.7) using two methods. First, we derived NLy{alpha}/Ntot directly using extensive simulations to correct for incompleteness. Second, we used a Bayesian formalism (introduced by Treu et al. 2012) that compares the z>7 galaxy spectra to models of the Lyman-alpha equivalent width (WLy{alpha}) distribution at z~6. We explored two simple evolutionary scenarios: smooth evolution where Lyman-alpha is attenuated in all galaxies by a constant factor (perhaps owing to processes from galaxy evolution or a slowly increasing IGM opacity), and patchy evolution where Lyman-alpha is blocked in some fraction of galaxies (perhaps due to the IGM being opaque along only some fraction of sightlines). The Bayesian formalism places stronger constraints compared with the direct method. Combining our data with that in the literature we find that at z~8 the Lyman-alpha fraction has dropped by a factor >3(84% confidence interval) using both the smooth and patchy scenarios compared to the z~6 values. Furthermore, we find a tentative evidence that the data favor the patchy scenario over smooth (with positive Bayesian evidence), extending trends observed at z~7 to higher redshift. If this decrease is a result of reionization as predicted by theory, then our data imply the volume averaged neutral hydrogen fraction in the IGM to be >0.3 suggesting that the reionization of the universe is in progress at z~8.
We calculate Lyman Alpha Emitter (LAE) angular correlation functions (ACFs) at $z simeq 6.6$ and the fraction of lifetime (for the 100 Myrs preceding $zsimeq6.6$) galaxies spend as Lyman Break Galaxies (LBGs) or as LBGs with Lyman Alpha (Ly$alpha$) e
The epoch of reionization (6 < z < 10) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the univer
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging
We investigate the large-scale structure of Lyman-alpha emission intensity in the Universe at redshifts z=2-3.5 using cross-correlation techniques. Our Lya emission samples are spectra of BOSS Luminous Red Galaxies from Data Release 12 with the best
The unprecedentedly bright afterglow of Swift GRB 130606A at z = 5.91 gave us a unique opportunity to probe the reionization era by high precision analyses of the redward damping wing of Ly alpha absorption, but the reported constraints on the neutra