Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit


الملخص بالإنكليزية

The displacement of micro-electro-mechanical-systems (MEMS) cantilevers is used to measure a broad variety of phenomena in devices ranging from force microscopes to biochemical sensors to thermal imaging systems. We demonstrate the first direct measurement of a MEMS cantilever displacement with a noise floor at 40% of the shot noise limit (SNL). By combining multi-spatial-mode quantum light sources with a simple differential measurement, we show that sub-SNL MEMS displacement sensitivity is highly accessible compared to previous efforts that measured the displacement of macroscopic mirrors with very distinct spatial structures crafted with multiple optical parametric amplifiers and locking loops. These results support a new class of quantum MEMS sensor with an ultimate signal to noise ratio determined by quantum correlations, enabling ultra-trace sensing, imaging, and microscopy applications in which signals were previously obscured by shot noise.

تحميل البحث