ﻻ يوجد ملخص باللغة العربية
We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow reconstruction to future experiments in high energy physics. Tests of this algorithm in full detector simulations, using strips of size 45 x 5 mm^2 show that the performance is close to that of a calorimeter with true 5 x 5 mm^2 readout granularity. The performance can be further improved by the use of 10 x 10 mm^2 tile- shaped layers interspersed between strip layers.
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test b
A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future lepton collider experiments. A prototype of 21.5 $X_0$ depth and $180 times 180 $mm$^2$ transverse dimensions was constructed, consisting of 2
Scintillator-based calorimeters for experiments at Higgs factories (e.g. ILC) demand scintillator designs that can detect sufficient number of photons and have good light yield uniformity, and that they can be easily mass-produced. In order to meet t
The PADME experiment at the LNF Beam Test Facility searches for dark photons produced in the annihilation of positrons with the electrons of a fix target. The strategy is to look for the reaction $e^{+}+e^{-}rightarrow gamma+A$, where $A$ is the dark
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel a