ﻻ يوجد ملخص باللغة العربية
We present ~47,000 periodic variables found during the analysis of 5.4 million variable star candidates within a 20,000 square degree region covered by the Catalina Surveys Data Release-1 (CSDR1). Combining these variables with type-ab RR Lyrae from our previous work, we produce an on-line catalog containing periods, amplitudes, and classifications for ~61,000 periodic variables. By cross-matching these variables with those from prior surveys, we find that > 90% of the ~8,000 known periodic variables in the survey region are recovered. For these sources we find excellent agreement between our catalog and prior values of luminosity, period and amplitude, as well as classification. We investigate the rate of confusion between objects classified as contact binaries and type-c RR Lyrae (RRcs) based on periods, colours, amplitudes, metalicities, radial velocities and surface gravities. We find that no more than few percent of these variables in these classes are misidentified. By deriving distances for this clean sample of ~5,500 RRcs, we trace the path of the Sagittarius tidal streams within the Galactic halo. Selecting 146 outer-halo RRcs with SDSS radial velocities, we confirm the presence of a coherent halo structure that is inconsistent with current N-body simulations of the Sagittarius tidal stream. We also find numerous long-period variables that are very likely associated within the Sagittarius tidal streams system. Based on the examination of 31,000 contact binary light curves we find evidence for two subgroups exhibiting irregular lightcurves. One subgroup presents significant variations in mean brightness that are likely due to chromospheric activity. The other subgroup shows stable modulations over more than a thousand days and thereby provides evidence that the OConnell effect is not due to stellar spots.
The number of known periodic variables has grown rapidly in recent years. Thanks to its large field of view and faint limiting magnitude, the Zwicky Transient Facility (ZTF) offers a unique opportunity to detect variable stars in the northern sky. He
Stellar variability in the near-infrared (NIR) remains largely unexplored. The exploitation of public science archives with data-mining methods offers a perspective for the time-domain exploration of the NIR sky. We perform a comprehensive search for
We report the discovery of 3 new Double Periodic Variables based on the analysis of ASAS-SN light curves: GSD J11630570-510306, V593 Sco and TYC 6939-678-1. These systems have orbital periods between 10 and 20 days and long cycles between 300 and 600 days.
We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, SDSS and GALEX multi-colour photometry, we identi
The discovery and characterization of Algol eclipsing binaries (EAs) provide an opportunity to contribute for a better picture of the structure and evolution of low-mass stars. However, the cadence of most current photometric surveys hinders the dete