ترغب بنشر مسار تعليمي؟ اضغط هنا

In-situ high energy synchrotron X-ray diffraction investigation of the MgB2 phase formation and MgB2 tapes sintering

116   0   0.0 ( 0 )
 نشر من قبل Maurizio Vignolo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper we report an in-situ high-energy X-ray diffraction analysis of MgB2 tapes during the preparation process. The experiment was performed in a specifically designed furnace working in reducing atmosphere, compatible with the Laue diffraction condition. The MgB2 synthesis was realized starting from MgH2 and amorphous B in powder form as precursors, varying reaction temperature and testing different cooling processes. We analyzed both the MgB2 synthesis and the sintering process of tapes prepared with these powders. Phase evolution, micro and crystallographic structure were monitored during the different thermal treatments. Among the main results we observed the formation of MgB2 at an extraordinary low temperature (300C), probably as a result of a solid-state reaction between MgH2 and B. Furthermore, we studied the dependence of the micro-structure upon the thermal treatment and its effect on the critical current performance of the superconducting tapes.



قيم البحث

اقرأ أيضاً

We report on the superconducting performance of the ex-situ SiC doped MgB2 monofilamentary tapes. Polycrystalline powders of MgB2 doped with 5 and 10 wt% SiC were synthesized by conventional solid-state reaction route and characterized for their supe rconducting performance. It is found that superconducting parameters i.e. upper critical field (Hc2), irreversibility field (Hirr) and critical current density (Jc) are all improved significantly with SiC addition. Also it was found that relatively lower synthesis temperature (700 C) resulted in further improved superconducting parameters. As synthesized powders are used for ex-situ powder-in-tube (PIT) monofilamentary tapes and superconducting parameters are determined. Albeit the superconducting transition temperature (Tc) is decreased slightly (2K) for SiC doped tapes, the superconducting performance in terms of critical current density (Jc), being determined from both magnetization and transport measurements, is improved significantly. In particular the SiC doped and 700 {deg}C synthesized MgB2 tapes exhibited the transport Jc of nearly 10^4 A/cm2 under applied fields of as high as 7 Tesla. Further it is found that the Jc anisotropy decreases significantly for SiC doped tapes. Disorder due to substitution of C at B site being created from broken SiC and the presence of nano SiC respectively in SiC added ex-situ MgB2 tapes are responsible for decreased anisotropy and improved Jc(H) performance.
MgB2 monofilamentary nickel-sheated tapes and wires were fabricated by means of the ex-situ powder-in-tube method using either high-energy ball milled and low temperature synthesized powders. All sample were sintered at 920 C in Ar flow. The milling time and the revolution speed were tuned in order to maximize the critical current density in field (Jc): the maximum Jc value of 6 x 10e4 A/cm2 at 5 K and 4 T was obtained corresponding to the tape prepared with powders milled for 144h at 180rpm. Vorious synthesis temperature were also investigated (730-900 C) finding a best Jc value for the wire prepared with powders synthesized at 745 C. We speculate that this optimal temperature is due to the fluidifying effect of unreacted magnesium content before the sintering process which could better connect the grains.
We have investigated the microstructure, normal-state electrical connectivity, and critical current density of ex-situ MgB2 polycrystalline bulks prepared by systematically varying the sintering conditions under low pressure. Samples heated at a high temperature of ~900{deg}C for a long period showed an increased packing factor, a larger intergrain contact area, and a significantly enhanced electrical connectivity, all of which indicate solid-state self-sintering of MgB2. Sintered ex-situ MgB2 bulks from a laboratory-made ball-milled powder exhibited a greatly enhanced connectivity of 28%, which is the highest connectivity of pressureless ex-situ MgB2 bulks, wires, and tapes. Surprisingly, grain growth did not occur during long-duration (~100 h) sintering in the sintered ex-situ MgB2 bulks. This is in marked contrast to in-situ processed MgB2 samples for which significant grain growth occurred during heat treatment at ~900{deg}C, producing grains that are several tens of times larger than the initial boron grains. Consequently, the critical current density as a function of the external magnetic field at 20 K progressively improved with sintering due to the relatively small grain size and good intergrain connectivity. We thus conclude that solid-state self-sintering is an effective approach for producing strongly connected, dense ex-situ MgB2 polycrystals without grain growth.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie ved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders showed a strong enhancement of the irreversibility field H*, the upper critical field Hc2 and the critical current density Jc(H) together with the suppression of the anisotr opy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and 10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at 25 K, high values for not-doped MgB2. The enhanced Jc and H* values are associated with significant grain refinement produced by milling of the MgB2 powder, which enhances grain boundary pinning, although at the same time also reducing the connectivity from about 12% to 8%. Although enhanced pinning and diminished connectivity are in opposition, the overall influence of ball milling on Jc is positive because the increased density of grains with a size comparable with the mean free path produces strong electron scattering that substantially increases Hc2, especially Hc2 perpendicular to the Mg and B planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا