ﻻ يوجد ملخص باللغة العربية
We show that there exists a family of groups $G_n$ and nontrivial irreducible representations $rho_n$ such that, for any constant $t$, the average of $rho_n$ over $t$ uniformly random elements $g_1, ldots, g_t in G_n$ has operator norm $1$ with probability approaching 1 as $n rightarrow infty$. More quantitatively, we show that there exist families of finite groups for which $Omega(log log |G|)$ random elements are required to bound the norm of a typical representation below $1$. This settles a conjecture of A. Wigderson.
We consider the asymptotic behavior as $ntoinfty$ of the spectra of random matrices of the form [frac{1}{sqrt{n-1}}sum_{k=1}^{n-1}Z_{nk}rho_n ((k,k+1)),] where for each $n$ the random variables $Z_{nk}$ are i.i.d. standard Gaussian and the matrices $
We give a description of the centralizer algebras for tensor powers of spin objects in the pre-modular categories $SO(N)_2$ (for $N$ odd) and $O(N)_2$ (for $N$ even) in terms of quantum $(n-1)$-tori, via non-standard deformations of $Umathfrak{so}_N$
For a rank two root system and a pair of nonnegative integers, using only elementary combinatorics we construct two posets. The constructions are uniform across the root systems A1+A1, A2, C2, and G2. Examples appear in Figures 3.2 and 3.3. We then f
This document is a companion for the Maple program : Discrete series and K-types for U(p,q) available on:http://www.math.jussieu.fr/~vergne We explain an algorithm to compute the multiplicities of an irreducible representation of U(p)x U(q) in a disc
In this paper, we define a set which has a finite group action and is generated by a finite color set, a set which has a finite group action, and a subset of the set of non negative integers. we state its properties to apply one of solution of the fo