ترغب بنشر مسار تعليمي؟ اضغط هنا

Single shot three-dimensional imaging of dilute atomic clouds

171   0   0.0 ( 0 )
 نشر من قبل Kaspar Sakmann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light field microscopy methods together with three dimensional (3D) deconvolution can be used to obtain single shot 3D images of atomic clouds. We demonstrate the method using a test setup which extracts three dimensional images from a fluorescent $^{87}$Rb atomic vapor.



قيم البحث

اقرأ أيضاً

Collective effects in atom-light interaction is of great importance for cold-atom-based quantum devices or fundamental studies on light transport in complex media. Here we discuss and compare three different approaches to light scattering by dilute c old atomic ensembles. The first approach is a coupled-dipole model, valid at low intensity, which includes cooperative effects, like superradiance, and other coherent properties. The second one is a random-walk model, which includes classical multiple scattering and neglects coherence effects. The third approach is a crude approximation only based on the attenuation of the excitation beam inside the medium, the so-called shadow effect. We show that in the case of a low-density sample, the random walk approach is an excellent approximation for steady-state light scattering, and that the shadow effect surprisingly gives rather accurate results at least up to optical depths on the order of 15.
We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows us to take multiple images of the same cloud, which enables sub-atom shot noise measurement precision of the atom number and allows for an in situ determination of the measurement precision. We have developed a noise model that quantitatively describes the noise contributions due to photon shot noise in the detected light and the noise associated with single atom loss. This model contains no free parameters and is calculated through an analysis of the fluctuations in the acquired images. For clouds containing $N sim 5 times 10^6$ atoms, we achieve a precision more than a factor of two below the atom shot noise level.
We report the efficient and fast ($sim 2mathrm{Hz}$) preparation of randomly loaded 1D chains of individual $^{87}$Rb atoms and of dense atomic clouds trapped in optical tweezers using a new experimental platform. This platform is designed for the st udy of both structured and disordered atomic systems in free space. It is composed of two high-resolution optical systems perpendicular to each other, enhancing observation and manipulation capabilities. The setup includes a dynamically controllable telescope, which we use to vary the tweezer beam waist. A D1 $Lambda$-enhanced gray molasses enhances the loading of the traps from a magneto-optical trap. Using these tools, we prepare chains of up to $sim 100$ atoms separated by $sim 1 mathrm{mu m}$ by retro-reflecting the tweezer light, hence producing a 1D optical lattice with strong transverse confinement. Dense atomic clouds with peak densities up to $n_0 = 10^{15}:mathrm{at}/mathrm{cm}^3$ are obtained by compression of an initial cloud. This high density results into interatomic distances smaller than $lambda/(2pi)$ for the D2 optical transitions, making it ideal to study light-induced interactions in dense samples.
We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to second order in the density. Within the framework of a diagrammatic representation method, we identify all the second order diagrams that enter into the description of the relative permittivity for coherent light transmission. These diagrams originate from pairwise position correlation and recurrent scattering. Using coupled dipole equations, we numerically simulate the coherent transmission with scalar and vector waves, and find good agreement with the perturbative calculations. We applied this perturbative expansion approach to a classical gas at rest, but the method is extendable to thermal gas with finite atomic motion and to quantum gases where non-trivial pair correlations can be naturally included.
Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective read-out, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical clock state control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا