ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-biased Reconfigurable Graphene Stacks for Terahertz Plasmonics

131   0   0.0 ( 0 )
 نشر من قبل Juan Sebastian Gomez Diaz Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at THz and mid-IR frequencies. However, the requirement of a gating electrode close to graphene and the single `control knob that this approach offers for graphene conductivity limits the practical implementation and performance of graphene-controllable plasmonic devices. Herein, we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate --a third graphene layer or an external gate-- allows independent control of the complex conductivity of each layer within the stack and hence provides enhanced control on the stack equivalent complex conductivity. The proposed concepts are first theoretically studied and then demonstrated experimentally via a detailed procedure allowing extraction of the parameters of each layer independently and for arbitrary pre-doping. These results are believed to be instrumental to the development of THz and mid-IR plasmonic devices with enhanced performance and reconfiguration capabilities.



قيم البحث

اقرأ أيضاً

222 - Tony Low , Phaedon Avouris 2014
In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphenes unique electrical and optical properties, tunabilty, long-lived collective excitation and their extreme light confinement. Here, we review the basic properties of graphene plasmons; their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, mid-infrared vibrational spectroscopy, among many others.
132 - Y. Dong , L. Xiong , I.Y. Phinney 2021
Dragging of light by moving dielectrics was predicted by Fresnel and verified by Fizeaus celebrated experiments with flowing water. This momentous discovery is among the experimental cornerstones of Einsteins special relativity and is well understood in the context of relativistic kinematics. In contrast, experiments on dragging photons by an electron flow in solids are riddled with inconsistencies and so far eluded agreement with the theory. Here we report on the electron flow dragging surface plasmon polaritons (SPPs): hybrid quasiparticles of infrared photons and electrons in graphene. The drag is visualized directly through infrared nano-imaging of propagating plasmonic waves in the presence of a high-density current. The polaritons in graphene shorten their wavelength when launched against the drifting carriers. Unlike the Fizeau effect for light, the SPP drag by electrical currents defies the simple kinematics interpretation and is linked to the nonlinear electrodynamics of the Dirac electrons in graphene. The observed plasmonic Fizeau drag enables breaking of time-reversal symmetry and reciprocity at infrared frequencies without resorting to magnetic fields or chiral optical pumping.
The optical response of graphene micro-structures, such as micro-ribbons and disks, is dominated by the localized plasmon resonance in the far infrared (IR) spectral range. An ensemble of such structures is usually involved and the effect of the coup ling between the individual structures is expected to play an important role. In this paper, the plasmonic coupling of graphene microstructures in different configurations is investigated. While a relatively weak coupling between graphene disks on the same plane is observed, the coupling between vertically stacked graphene disks is strong and a drastic increase of the resonance frequency is demonstrated. The plasmons in a more complex structure can be treated as the hybridization of plasmons from more elementary structures. As an example, the plasmon resonances of graphene micro-rings are presented, in conjunction with their response in a magnetic field. Finally, the coupling of the plasmon and the surface polar phonons of SiO2 substrate is demonstrated by the observation of a new hybrid resonance peak around 500cm-1.
Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highl y tunable and shows strong energy confinement capability. Most intriguing, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review paper, well present the most important advances in grapene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces. Its an exciting and promising new subject in the nanophotonics and plasmonics research field.
Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered (in addition to high los ses) by the absence of stable and inexpensive metal films suitable for plasmonic applications. This may seem surprising given the number of metal compounds to choose from. Unfortunately, most of them either exhibit a strong damping of surface plasmons or easily oxidize and corrode. To this end, there has been continuous search for alternative plasmonic materials that are, unlike gold, the current metal of choice in plasmonics, compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonics characteristics surpassing those of gold films. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate a wide use of graphene-protected plasmonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا