ترغب بنشر مسار تعليمي؟ اضغط هنا

The Pointing System of the Herschel Space Observatory. Description, Calibration, Performance and Improvements

150   0   0.0 ( 0 )
 نشر من قبل Miguel S\\'anchez-Portal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the activities carried out to calibrate and characterise the performance of the elements of attitude control and measurement on board the Herschel spacecraft. The main calibration parameters and the evolution of the indicators of the pointing performance are described, from the initial values derived from the observations carried out in the performance verification phase to those attained in the last year and half of mission, an absolute pointing error around or even below 1 arcsec, a spatial relative pointing error of some 1 arcsec and a pointing stability below 0.2 arsec. The actions carried out at the ground segment to improve the spacecraft pointing measurements are outlined. On-going and future developments towards a final refinement of the Herschel astrometry are also summarised. A brief description of the different components of the attitude control and measurement system (both in the space and in the ground segments) is also given for reference. We stress the importance of the cooperation between the different actors (scientists, flight dynamics and systems engineers, attitude control and measurement hardware designers, star-tracker manufacturers, etc.) to attain the final level of performance.



قيم البحث

اقرأ أيضاً

A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 an d 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) o f individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site (http://herschel.vo.elte.hu) and also as a set of REST web service functions.
The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.
The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESAs far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two f illed silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210mu m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85mu m or 85-125mum and 125-210mu m, over a field of view of ~1.75x3.5, with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47x47, resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.
173 - J.Postma 2011
We describe calibration data, and discuss performance of the photon-counting flight detectors for the Ultraviolet Imaging Telescopes on the Astrosat observatory. The paper describes dark current, flat field and light-spot images for FUV, NUV, and Vis ible band detectors at more than one wavelength setting for each. We also report on nominal gain and low-gain operations, full- and sub-window read rates, and non-photon-counting modes of operation, all expected to be used in flight. We derive corrections to the event centroids from the CMOS readout arrays, for different centroid algorithms. We derive spatial resolution values for each detector and plots of point-source signal saturation for different flux levels. We also discuss ways to correct for saturation in extended object images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا