ﻻ يوجد ملخص باللغة العربية
Kaluza-Klein (KK) parity can be violated in five-dimensional universal extra dimensional model with boundary-localized (kinetic or mass) terms (BLTs) at the fixed points of $S^1/Z_2$ orbifold. In this framework we study the resonant production of Kaluza-Klein excitations of the neutral electroweak gauge bosons at the LHC and their decay into an electron-positron pair or a muon-antimuon pair. We use the results (first time in our knowledge) given by the LHC experiment to constrain the mass range of the first KK-excitation of the electroweak gauge bosons ($B^1 textrm{and} W_3^1$). It is interesting to note that the LHC result puts an upper limit on the masses of the $n=1$ KK-leptons for positive values of BLT parameters and depending upon the mass of $ell^{+}ell^{-}$ resonance.
Addition of boundary localised kinetic and Yukawa terms to the action of a 5-dimensional Standard Model would non-trivially modify the Kaluza-Klein spectra and some of the interactions among the Kaluza-Klein excitations compared to the minimal versio
Unequal strengths of boundary localised terms lead to non-conservation of the Kaluza-Klein (KK) parity in the 4 + 1 Universal Extra Dimensional model. Consequently the first excited KK-partners of Standard Model particles are not stable by any symmet
The nuclear spin of a He$^3$ quasiparticle dissolved in superfluid He$^4$ sees an apparent magnetic field proportional to the Fermi coupling constant, the superfluid condensate density, and the electron current at the He$^3$ nucleus. Whereas the dire
Recently CMS and ATLAS announced that they had measured the Higgs boson parity. Here we note that their approach can determine this parity only under the additional assumption that this particle has a definite parity. If parity conservation is viol
Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even $U(1)times U(1)$ planar quantum electrodynamics (QED$_3$) model. The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) sub