ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic extension of the two component model for hadroproduction in heavy-ion collisions

114   0   0.0 ( 0 )
 نشر من قبل Alexander Bylinkin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependence of the spectra shape of produced charged hadrons on the size of a colliding system is discussed using a two component model. As a result, the hierarchy by the system-size in the spectra shape is observed. Next, the hydrodynamic extension of the two component model for hadroproduction using recent theoretical calculations is suggested to describe the spectra of charged particles produced in heavy-ion collisions in the full range of transverse momenta, $p_T$. Data from heavy-ion collisions measured at RHIC and LHC are analyzed using the introduced approach and are combined in terms of energy density. The observed regularities might be explained by the formation of QGP during the collision.



قيم البحث

اقرأ أيضاً

The shapes of invariant differential cross section for charged particle production as function of transverse momentum measured in heavy-ion collisions are analyzed. The data measured at RHIC and LHC are treated as function of energy density according to a recent theoretical approach. The Boltzmann-like statistical distribution is extracted from the whole statistical ensemble of produced hadrons using the introduced model. Variation of the temperature, characterizing this exponential distribution, is studied as function of energy density.
92 - Zhong-Dao Lu 2002
The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding syste m of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.
The three-dimensional pion and kaon emission source functions are extracted from the HKM model simulations of the central Au+Au collisions at the top RHIC energy $sqrt{s_{NN}}=200$ GeV. The model describes well the experimental data, previously obtai ned by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of the rescatterings and long-lived resonances decays in forming of the mentioned long range tails is investigated. The particle rescatterings contribution to the out tail seems to be dominating. The model calculations also show the substantial relative emission times between pions (with mean value 14.5 fm/c in LCMS), including those coming from resonance decays and rescatterings. The prediction is made for the source functions in the LHC Pb+Pb collisions at $sqrt{s_{NN}}=2.76$ TeV, which are still not extracted from the measured correlation functions.
82 - F. Arleo , P. Aurenche , F. Bopp 2003
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8~GeV, which remains a mystery since heavy quarks typically lose less energies in quar k-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, $D$ mesons, $B$ mesons and $B$-decayed $D$ mesons simultaneously over a wide range of transverse momenta (8-300~GeV). This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than 30-40~GeV, $B$ mesons also exhibit similar suppression effects to charged hadrons and $D$ mesons, which may be tested by future measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا