Efficient Energy-minimization in Finite-Difference Micromagnetics: Speeding up Hysteresis Computations


الملخص بالإنكليزية

We implement an efficient energy-minimization algorithm for finite-difference micromagnetics that proofs especially useful for the computation of hysteresis loops. Compared to results obtained by time integration of the Landau-Lifshitz-Gilbert equation, a speedup of up to two orders of magnitude is gained. The method is implemented in a finite-difference code running on CPUs as well as GPUs. This setup enables us to compute accurate hysteresis loops of large systems with a reasonable computational effort. As a benchmark we solve the {mu}Mag Standard Problem #1 with a high spatial resolution and compare the results to the solution of the Landau-Lifshitz-Gilbert equation in terms of accuracy and computing time.

تحميل البحث