ﻻ يوجد ملخص باللغة العربية
We implement an efficient energy-minimization algorithm for finite-difference micromagnetics that proofs especially useful for the computation of hysteresis loops. Compared to results obtained by time integration of the Landau-Lifshitz-Gilbert equation, a speedup of up to two orders of magnitude is gained. The method is implemented in a finite-difference code running on CPUs as well as GPUs. This setup enables us to compute accurate hysteresis loops of large systems with a reasonable computational effort. As a benchmark we solve the {mu}Mag Standard Problem #1 with a high spatial resolution and compare the results to the solution of the Landau-Lifshitz-Gilbert equation in terms of accuracy and computing time.
It is common to encounter situations where one must solve a sequence of similar computational problems. Running a standard algorithm with worst-case runtime guarantees on each instance will fail to take advantage of valuable structure shared across t
In this paper we will describe two new optimisations implemented in MadGraph5_aMC@NLO, both of which are designed to speed-up the computation of leading-order processes (for any model). First we implement a new method to evaluate the squared matrix e
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation
We present our open-source Python module Commics for the study of the magnetization dynamics in ferromagnetic materials via micromagnetic simulations. It implements state-of-the-art unconditionally convergent finite element methods for the numerical
There are two distinct approaches to speeding up large parallel computers. The older method is the General Purpose Graphics Processing Units (GPGPU). The newer is the Many Integrated Core (MIC) technology . Here we attempt to focus on the MIC technol