ترغب بنشر مسار تعليمي؟ اضغط هنا

The gamma-ray spectrometer HORUS and its applications for nuclear astrophysics

123   0   0.0 ( 0 )
 نشر من قبل Lars Netterdon
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A dedicated setup for the in-beam measurement of absolute cross sections of astrophysically relevant charged-particle induced reactions is presented. These, usually very low, cross sections at energies of astrophysical interest are important to improve the modeling of the nucleosynthesis processes of heavy nuclei. Particular emphasis is put on the production of the $p$ nuclei during the astrophysical $gamma$ process. The recently developed setup utilizes the high-efficiency $gamma$-ray spectrometer HORUS, which is located at the 10 MV FN tandem ion accelerator of the Institute for Nuclear Physics in Cologne. The design of this setup will be presented and results of the recently measured $^{89}$Y(p,$gamma$)$^{90}$Zr reaction will be discussed. The excellent agreement with existing data shows, that the HORUS spectrometer is a powerful tool to determine total and partial cross sections using the in-beam method with high-purity germanium detectors.



قيم البحث

اقرأ أيضاً

Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear astrophysics are performed at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator, deep underground in Italys Gran Sasso laboratory. By virtue of a specially constructed passive shield, the laboratory gamma-ray background for E_gamma < 3 MeV at LUNA has been reduced to levels comparable to those experienced in dedicated offline underground gamma-counting setups. The gamma-ray background induced by an incident alpha-beam has been studied. The data are used to evaluate the feasibility of sensitive in-beam experiments at LUNA and, by extension, at similar proposed facilities.
An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ra y background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.
Materials containing radionuclides of natural origin, which is modified by human made processes and being subject to regulation because of their radioactivity are known as NORM. We present a brief review of the main categories of non-nuclear industri es together with the levels of activity concentration in feed raw materials, products and waste, including mechanisms of radioisotope enrichments. The global management of NORM shows a high level of complexity, mainly due to different degrees of radioactivity enhancement and the huge amount of worldwide waste production. The future tendency of guidelines concerning environmental protection will require both a systematic monitoring based on the ever-increasing sampling and high performance of gamma ray spectroscopy. On the ground of these requirements a new low background fully automated high-resolution gamma-ray spectrometer MCA_Rad has been developed. The design of Pb and Cu shielding allowed to reach a background reduction of two order of magnitude with respect to laboratory radioactivity. A severe lowering of manpower cost is obtained through a fully automation system, which enables up to 24 samples to be measured without any human attendance. Two coupled HPGe detectors increase the detection efficiency, performing accurate measurements on sample volume (180 cc) with a reduction of sample transport cost of material. Details of the instrument calibration method are presented. MCA_Rad system can measure in less than one hour a typical NORM sample enriched in U and Th with some hundreds of Bq/kg, with an overall uncertainty less than 5%. Quality control of this method has been tested. Measurements of certified reference materials RGK-1, RGU-2 and RGTh-1 containing concentrations of K, U and Th comparable to NORM have been performed, resulting an overall relative discrepancy of 5% among central values within the reported uncertainty.
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.
In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at w hich experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا