ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic back-reaction from currents on a straight string

166   0   0.0 ( 0 )
 نشر من قبل Jeremy Wachter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge carriers moving at the speed of light along a straight, superconducting cosmic string carry with them a logarithmically divergent slab of electromagnetic field energy. Thus no finite local input can induce a current that travels unimpeded to infinity. Rather, electromagnetic back-reaction must damp this current asymptotically to nothing. We compute this back-reaction and find that the electromagnetic fields and currents decline exactly as rapidly as necessary to prevent a divergence. We briefly discuss the corresponding gravitational situation.



قيم البحث

اقرأ أيضاً

We find the leading-order effect of gravitational back-reaction on cosmic strings for points near kinks and cusps. Near a kink, the effect diverges as the inverse cube root of the distance to the kink, and acts in a direction transverse to the worlds heet. Over time the kink is rounded off, but only regions fairly close to the kink are significantly affected. Near cusps, the effect diverges inverse linearly with the distance to the cusp, and acts against the direction of the cusp motion. This results in a fractional loss of string energy that diverges logarithmically with the distance of closest approach to the cusp.
264 - Garvin Yim , D. I. Jones 2021
The problem of the gravitational radiation damping of neutron star fundamental ($f$) mode oscillations has received considerable attention. Many studies have looked at the stability of such oscillations in rapidly rotating stars, calculating the grow th/decay rate of the mode amplitude. In this paper, we look at the relatively neglected problem of the radiation reaction on the spin of the star. We specialise greatly to the so-called Kelvin modes: the modes of oscillation of (initially) non-rotating incompressible stars. We find the unexpected result that the excitation of a mode of angular momentum $delta J$ on an initially non-rotating star ends up radiating an angular momentum $2 delta J$ to infinity, leaving the star itself with a bulk angular momentum of $-delta J$. This result is interesting in itself, and also will have implications for the angular momentum budgets of spinning down neutron stars, should such modes be excited.
330 - Sankar K , Sarad AV 2008
An algorithm to generate the locus of a circle using the intersection points of straight lines is proposed. The pixels on the circle are plotted independent of one another and the operations involved in finding the locus of the circle from the inters ection of straight lines are parallelizable. Integer only arithmetic and algorithmic optimizations are used for speedup. The proposed algorithm makes use of an envelope to form a parabolic arc which is consequent transformed into a circle. The use of parabolic arcs for the transformation results in higher pixel errors as the radius of the circle to be drawn increases. At its current state, the algorithm presented may be suitable only for generating circles for string art.
We show experimentally that a continuous, linear, dielectric antenna in which a superluminal polarization-current distribution accelerates can be used to transmit a broadband signal that is reproduced in a comprehensible form at a chosen target dista nce and angle. The requirement for this exact correspondence between broadcast and received signals is that each moving point in the polarization-current distribution approaches the target at the speed of light at all times during its transit along the antenna. This results in a one-to-one correspondence between the time at which each point on the moving polarization current enters the antenna and the time at which {it all} of the radiation emitted by this particular point during its transit through the antenna arrives simultaneously at the target. This has the effect of reproducing the desired time dependence of the original broadcast signal. For other observer/detector positions, the time dependence of the signal is scrambled, due to the non-trivial relationship between emission (retarded) time and reception time. This technique represents a contrast to conventional radio transmission methods; in most examples of the latter, signals are broadcast with little or no directivity, selectivity of reception being achieved through the use of narrow frequency bands. In place of this, the current paper uses a spread of frequencies to transmit information to a particular location; the signal is weaker and has a scrambled time dependence elsewhere. We point out the possible relevance of this mechanism to 5G neighbourhood networks. This work also constitutes a ground-based astrophysics experiment that gives strong clues towards the emission mechanism of pulsars.
We give a correction to the tunneling probability by taking into account the back reaction effect to the metric of the black hole spacetime. We then show how this gives rise to the modifications in the semiclassical black hole entropy and Hawking tem perature. Finally, we reproduce the familiar logarithmic correction to the Bekenstein-Hawking area law.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا